Jumat, 12 April 2013

menghitung berat besi

Berbicara tentang struktur, khususnya struktur beton bertulang, menghitung
kebutuhan besi adalah hal pokok yang tidak bisa dihindari, dan lebih-lebih jika hal
tersebut dihubungkan dengan RAB ( rencana anggaran biaya ) maka hal tersebut
menjadi sangat penting.
Dalam menghitung berat besi, kadangkala konversi perhitungannya lebih
mengarah ke parameter berat (kg) daripada ke parameter jumlah batang (misal :
lonjoran), kalau tidak percaya anda boleh jalan-jalan ketoko besi (khususnya yang
menjual besi tulangan dan plat) kemudian tanyakan ke penjualnya, untuk beli
besi tersebut hitungan harganya berdasarkan jumlah besi yang anda beli ataukah
berdasarkan berat dari besi secara keseluruhan yang anda beli ? ( atau kalau
dalam istilah tukangnya “lonjoran, bijian ataukah kiloan ???”)
Perumusan praktis untuk menghitung berat besi
Secara umum perumusan untuk menghitung berat besi adalah :
Vb x Bjb = ….. Kg
dimana : Vb = Volume besi (m3)
Bjb = Berat jenis besi = 7850 (kg/m3)
Contoh :
1. Pelat besi dengan ukuran (1m x 1m) dengan tebal pelat 1 mm, hitung
beratnya ?
berat besi = (1 x 1 x 0.001) m3 x 7850 kg/m3 = 7.85 kg
(Cat : 1 mm = 0.001 m)
2. Base plate dengan ukuran (25 cm x 30cm) dengan tebal plat 12 mm, hitung
beratnya ?
berat base plate = (0.25 x 0.30 x 0.012) m3 x 7850 kg/m3 = 7.065 kg.
Sampai disini cukup mudah dipahami kan?…..nah sekarang bagaimana
perumusannya untuk menghitung berat dari besi tulangan untuk beton?.
Jawabannya :
Caranya sama tidak ada yang beda, intinya adalah volume benda besi dikalikan
dengan berat jenis besi.
Contoh :
1. Hitung berat besi tulangan diameter 16 dengan panjang 12 meter ?
luas penampang Ø16 = 1/4 (π) d2 = 1/4(3.14)(0.016)2 = 0.00020096 m2
volume Ø16 = luas penampang x panjang batang = 0.00020096 m2 x 12 m =
0.002411 m3
berat besi Ø16 = Volume x 7850 kg/m3 = 0.002411 m3 x 7850 kg/m3 = 18.93
kg
cukup mudah kan ?, dari cara yang saya uraikan diatas, ada lagi cara yang lebih
cepat untuk menghitung berat dari besi tulangan tersebut, yaitu dengan
menggunakan perumusan :
Berat besi tulangan = 0.006165 x d2 x L …(Kg)
dimana : d = diameter tulangan (mm)
L = panjang batang tulangan (m)
Contoh :
2. Hitung berat besi dari contoh soal no 1, dengan perumusan diatas ?
berat besi Ø16 = 0.006165 x 162 x 12 = 18.93 kg
sama kan hasilnya,..silahkan anda menghitung sendiri dengan mencoba-coba
ukuran besi tulangan yang lain, dan saya pastikan bahwasanya dua cara diatas
akan menghasilkan hasil yang sama,…buktikan sendiri brow, insya Allah pasti
sama.
Nah… sekarang yang menjadi pertanyaan adalah “darimana asal angka 0.006165
dari perumusan diatas?”.
berikut adalah penjabarannya :
Seperti yang sudah saya uraikan diatas, rumus mencari berat besi adalah : Vb x
Bjb
dimana Vb = Volume besi dan Bjb = Berat jenis besi = 7850 kg/m3
Jadi berat besi tulangan (penampang bulat) :
= Vb x 7850 kg/m3
= ( 1/4 x π x d2 x L ) x 7850 kg/m3
= 1/4 x 3.1415 x d2 x L x 7850 kg/m3
karena d = diameter tulangan disebutkan dalam satuan milimeter (mm), maka
kita konversi dulu ke meter (m),
d2 = (d x d)…………………….……mm2
dikonversi ke meter ( 1mm = 0.001 m )
= ( 0.001d x 0.001d )
= ( 1x 10-6 ) d2 …………………m2
Sehingga,
= 1/4 x 3.1415 x ( 1x 10-6 ) d2 x L x 7850
= 0.006165 d2 x L
Jadi perumusan untuk menghitung berat besi adalah = 0.006165 d2 x L
Nb :
Sekedar sebagai perbandingan, berikut saya lampirkan tabel berat besi, silahkan
anda mencoba-coba sendiri dengan membuktikan perumusan diatas untuk
menghitung berat dari besi tulangan dan bandingkan hasilnya dengan tabel berat
besi berikut ini :
warna kuning = menyatakan panjang batang tulangan
warna hijau = menyatakan diameter tulangan
Contoh penggunaan tabel :
1. berat besi dari tulangan dengan diameter 12 dengan panjang 11 meter = 9.77
kg
Cek menggunakan rumus berat besi :
berat besi Ø12 = 0.006165 x 12 x 11 = 9.77 kg …..( sama)
Semoga bermanfaat…

PERHITUNGAN VOLUME PEKERJAAN

l  S0802-Rencana Anggaran Biaya
l  Pertemuan 6-7
l  Ir. Dwi Dinariana,MT
l  ITEM PEKERJAAN
“PEMBANGUNAN RUMAH TINGGAL”
1.       Pek. Persiapan, Galian dan Urugan
2.       Pek. Pondasi dan Beton Bertulang
3.       Pek. Pasangan Dinding dan Plesteran
4.       Pek. Lantai dan Dinding
5.       Pek. Plafon
6.       Pek. Kusen Pintu dan Jendela
7.       Pek. Atap
8.       Pek. Perlengkapan Pintu dan Jendela
9.       Pek. Sanitair
10.   Pek. Instalasi Air
11.   Pek. Instalasi Listrik
12.   Pek. Pengecatan
13.   Pek. Pembersihan Lahan
l  1. Pek. Persiapan, Galian dan Urugan
l  Pek. Persiapan
1.       Pembersihan/Persiapan Lahan
2.       Pengukuran dan Pasang Bouwplank
l  Pek. Galian dan Urugan
1.       Galian Tanah Pondasi
2.       Urugan Pasir Bawah Pondasi
3.       Urugan Pasir Bawah lantai
4.       Urugan Tanah Kembali
5.       Urugan Tanah Dibawah Lantai
l  Pembersihan/Persiapan Lahan
l  Lahan yang akan dibangun rumah dibersihkan terlebih dahulu dari pohon-pohon dan akarnya, semak-semak, rum put dan semua hal yang dapat mengganggu pekerjaan
V = p x l
Keterangan :
           V = volume pembersihan lahan (m2)
           p = panjang lahan (m)
           l  = lebar lahan (m)
l  Pengukuran dan Pasang Bouwplank
l  Bouwplank merupakan papan kayu sebagai pembatas lahan pekerjaan.
l  Bouwplank dipasang mengikuti bentuk lahan yang akan dibangun dengan jarak ±1 m dari galian pondasi
V = (p+2)x2  +  (l+2)x2
Keterangan :
           V = volume bouwplank (m)
           p = panjang lahan (m)
           l  = lebar lahan (m)
l  Galian Tanah Pondasi
V = [(a+b)/2xh] x p
Keterangan :
           V = volume galian pondasi (m3)
           p = panjang pondasi (m)
           b = lebar bawah galian pondasi (m)
           a = lebar atas galian pondasi (m)
           h = tinggi galian pondasi (m)
l  Urugan
Pek. Urugan Pasir Bawah Pondasi
V = h x b x p
Keterangan :
           V = volume pasir urug bawah pondasi (m3)
           p = panjang pondasi (m)
           b = lebar urugan (m)
           h = tebal urugan (m)
l  Urugan
Pek. Urugan Pasir Bawah Lantai
l  Urugan pasir di bawah lantai berfungsi u/ menstabilkan tanah, juga sebagai landasan lantai kerja diatasnya

V = h x l x p
V = h x L
L = l x p
Keterangan :
           V = volume  urugan pasir (m3)
           p = panjang ruangan (m)
           l = lebar urugan (m)
           L = luas lantai keramik (m2)
           h = tebal urugan pasir
l  Urugan
Pek. Urugan Tanah Bawah Lantai
l  Urugan tanah untuk peninggian lantai diperlukan agar peil lantai memiliki perbedaan tinggi
l  Ketinggian tergantung tinggi lantai yang diinginkan

V = h x l x p
V = h x L
L = l x p
Keterangan :
           V = volume  urugan tanah (m3)
           p = panjang ruangan (m)
           l = lebar urugan (m)
           L = luas lantai keramik (m2)
           h = tebal urugan tanah
l  Urugan
Pek. Urugan Tanah Kembali
l  Urugan tanah kembali di sisi kanan maupun kiri pondasi berfungsi untuk mengisi sisa galian pondasi yang telah dipasang pondasi batu kali
l  V = Vgal tanah – (Vpondasi+Vurugan pasir)
l  Keterangan :
          V = volume urugan tanah kembali (m3)
l  2. Pek. Pondasi dan Beton Bertulang
l  Pek. Pondasi
          Pondasi Batu Kali
l  Pek. Beton
          Beton Lantai Kerja

l  Pek Beton Bertulang
1.       Sloof beton
2.       Kolom Beton
3.       Ringbalk Beton
dst

Contoh Muqadimah Pidato

Assalamu'alaikum wr... wb...

Alhamdulillah,,,
Alhamdulillahi rabbil alamin wabihi nasta'inu ala umuridunnya waddin, washala tu wasala mu'ala asrafil anbiya iwal mursalin wa'ala alihi wasahbihi wamantabi'ahu ilayaumiddin,,,
Qalallahu ta'ala fill qur'an nirkarim a'uzubillahi minasyaitanirrajin bismillahirahmani rahim
qulhuallahu ahad allah hussamad lam yalid walam yulad walam yakullahu quffuwan ahad.
shadaqallahu 'azim wa shadaqa rasulillahil karim….
pertama tama buat ayuna langkah yang paling utama marilah sama sama kita panjat kah puji beserta syukur kehadirat allah swt , yang mana oleh allah telah memberikan kesehatan dan kesempatan  kepada kita sehingga kita dapat berkumpul di tempat yang berbahagia  ini dalam keadaan sehat wal afiat.….
shalawat di iringi dengan salam tak lupa pula kita sanjungkan keribaan nabi besar Muhammad Saw ,yang mana beliau telah merubah pola fikir manusia dari pola fikir jahilyah ke pola fikir yang islamyah sebagai mana yang kita rasa kan pada saat yg berbahagia ini,,,
shalawat dan salam juga kita limpahkan kpd shahabat dan ahli waris beliau yang telah membantu memperjuangan agama islam,,,kegunung sama mendaki,,,kelaut sama mendayung,,,untung sama di bagi,,,dan rugi sama sama di tangung demi tegak nya kalimah lailahaillallah muhammadarasulullah…
next>>>>>>> kata kata pehormatan

Kamis, 11 April 2013

BANGUNAN

4.1. Pekerjaan Ring Balk
Balok merupakan struktur atas dalam suatu bangunan, pekerjaan balok dibuat untuk menahan beban-beban yang bekerja pada struktur tersebut. Sebelum pekerjaan ini dilakukan, terlebih dahulu pihak kontraktor harus mengajukan usulan rencana kerja dan mendapat persetujuan dari konsultan pengawas. Untuk pekerjaan balok diperlukan beberapa tahap seperti pekerjaan pembesian, pembuatan dan pemasangan bekisting, pekerjaan pengecoran dan pembongkaran bekisting.

4.1. 1. Pekerjaan Pembesian
Besi beton yang digunakan adalah baja lunak dengan mutu U-24 (tegangan leleh karakteristik minimum 24 Kg/cm2 untuk ukuran ˂ Ø14 mm dan baja sedang dengan mutu U-32 (tegangan leleh karakteristik minimum 32 Kg/cm2). Tahapan untuk pekerjaan balok adalah pekerjaan pembesian dimana pada pekerjaan ini dilakukan oleh tukang atau pekerja yang sudah ahli dan terampil dibidang pembesian struktur bangunan, selain itu dalam pekerjaan ini juga membutuhkan alat-alat diantara lain adalah sebagai berikut :
1. Gunting Besi/Pemotong Besi
2. Pembengkok besi (Bar Bender)
3. Meteran
4. Kakak tua
5. Sarung tangan/alat septy lainnya
Sedangkan bahan-bahan yang digunakan dalam pekerjaan pembesian ring balk pembangunan Dinas Perhubungan, Informasi dan Komunikasi Kabupaten Aceh Timur adalah sebagai berikut :
1. Besi Polos Ø8
2. Besi Ulir D 12
3. Besi Ulir D 16
4. Kawat Beton
Menurut SNI diameter bengkokan yang diukur pada bagian dalam batang tulangan tidak boleh kurang dari 6db “diameter minimum”. Diameter dalam dari bengkokan untuk sengkang ikat tidak boleh kurang dari 4db “diameter minimum”. Perakitan dilakukan dilokasi pembangunan, hal ini dilakukan untuk memudahkan pekerjaan dan untuk menghemat waktu pelaksanaan. Adapun jumlah pekerja yang dilibatkan dalam pekerjaan pembesian kolom dan ring balk adalah :
1. Mandor 1 orang
2. Kepala Tukang Besi 2 orang
3. Tukang Besi 4 orang
4. Pekerja 10 orang

• Cara Pembengkokan
Bar Bender (pembengkok tulangan) adalah alat untuk membentuk baja tulangan sesuai dengan bentuk yang dibutuhkan. Pada proyek ini digunakan pembengkok manual. Pembengkok manual ini terbuat dari besi tulangan berdiameter 30 mm dan memiliki panjang 50 cm yang memiliki lubang pada ujungnya sesuai dengan ukuran tulangan yang akan dibengkokkan.
Semua tulangan harus dibengkokkan dalam keadaan dingin, kecuali bila diizinkan lain oleh Pengawas Lapangan.
Tulangan yang sebagian sudah tertanam didalam beton tidak boleh dibengkokkan dilapangan, kecuali seperti yang ditentukan pada gambar rencana, atau diizinkan oleh pengawas lapangan.

• Kondisi Permukaan Baja Tulangan
Pada saat beton dicor, tulangan harus bebas dari lumpur, minyak, atau segala jenis zat pelapis bukan logam yang dapat mengurangi kepasitas lekatan. Pelapis epoksi yang sesuai dengan acuan baku.
Jika pembatasan jarak dan selimut beton minimu didasarkan pada diameter tulangan db, maka satu unit bundle tulangan harus diperhitungkan sebagai tulangan tunggal dengan diameter yang didapat dari luas ekuivalen penampang gabungan.

• Pekerjaan Pembesian di Lapangan dan Menurut SNI
Pada pekerjaan dilapangan pengbengkokan besi dan sengkang tidak sesuai dengan SNI karena dilapangan pembengkokan hanya diperkirakan saja oleh pekerja, jarak sengkang yang di tentukan pada gambar bestek adalah 15 cm. Penempatan sambungan pada sengkang pada lapangan sesuai dengan SNI dengan cara membuat penempatan sambungan sengkang berselingan.

Detail Penulangan pada Ring Balk lantai II

4.1.2 Pembuatan dan Pemasangan Bekisting
Bekisting merupakan cetakan beton yang mengisi adukan kedalamnya, sampai adukan beton mengeras dalam jangka waktu ± 1 hari. Mal yang terbuat dari triplex dan kayu yang disusun berbentuk persegi. Pemasangan bekisting ini dilakukan diatas tanah .
Pada pembentukan triplex mal dilakukan dengan beberapa sisi, sehingga mal dapat terbentuk persegi, sedangkan disisi atas dibiarkan terbuka untuk dapat dilakukan pengecoran. Antara triplex satu dengan yang lainnya harus rapat dan tidak terdapat rongga-rongga agar adukan beton tidak merembes keluar mal.
Pemasangan bekisting dilakukan setelah pemasangan tulangan untuk balok, bekisting tersebut sudah dirangkai sesuai dengan ukuran dan dimensinya, bekisting terbuat dari triplex. Peralatan yang dibutuhkan untuk memasang bekisting balok adalah sebagai berikut :
1. Gergaji
2. Palu
3. Meteran
4. Waterpas
5. Unting-unting
6. Selang air
7. Pinsil
8. Benang
Sedangkan bahan-bahan yang dibutuhkan adalah :
1. Multiplek 9 mm
2. Kayu Dolken
3. Kawat Beton
4. Minyak bekisting
Adapun jumlah pekerja yang dilibatkan dalam pekerjaan pembuatan bekesting balok adalah :
1. Mandor 1 orang
2. Kepala Tukang Kayu 1 orang
3. Tukang Kayu 4 orang
4. Pekerja 8 orang
Sebelum pemasangan bekisting terlebih dulu diikat batu tahu (beton decking) pada tulangan untuk menjaga ketebalan selimut beton sesuai dengan yang diinginkan. Dimensi beton decking adalah sebesar 6 x 6 x 2,5 cm.
• Pekerjaan Bekisting di Lapangan dan Menurut SNI
Perencanaan bekisting di lapangan sudah sesuai dengan SNI, yaitu cetakan menghasilkan struktur akhir yang memenuhi bentuk, garis dan dimensi komponen struktur seperti disyaratkan pada gambar rencana dan spesifikasi, cetakan mantap dan cukup rapat untuk mencegah kebocoran mortal, cetakan diperkaku atau diikat dengan baik untuk mempertahankan posisi dan bentuk, cetakan dan tumpuannya direncanakan sehingga tidak merusak struktur yang dipasang sebelumnya, perencanaan cetakan disertai pertimbangan faktor-faktor berikut :
a. Kecepatan dan metode pengecoran beton
b. Beban selama kontruksi, termasuk beban-beban vertical, horizontal, dan tumbukan.
c. Persyaratan-persyaratan cetakan khusus untuk kontruksi sengkang, plat lipat, kubah, beton arsitektural, atau elemen-elemen sejenis.

4.1.3 Pekerjaan Pengecoran
Pekerjaan pengecoran balok harus dilakukan setelah pekerjaan pemasangan bekisting selesai. Sebelum pekerjaan pengecoran dilakukan, bekesting terlebih dahulu dilapisi dengan oli bekas/minyak bekesting, oli tersebut berfungsi untuk melapisi bagian dalam bekisting agar setelah beton mongering dapat dibuka dengan mudah dan untuk melindungi bekisting supaya tahan lama.
Untuk perbandingan campuran yang digunakan dalam pekerjaan pengecoran ring balk adalah 1 pc : 1 1/5 ps : 2 1/5 kr untuk selimut betonnya adalah 5 cm. hasil adukan semen terlihat bagus namun terkadang terlihat agak encer, hal itu sangat tidak baik suatu kontruksi, pengecoran ring balk harus dilakukan 3 lapisang dengan beberapa kutukan atau dengan menggunakan mesin getar untuk hasil yang lebih baik, apabila dilakukan dengan 1 lapisan saja akan mengakibatkan kerikil menumpuk disisi bawah struktur tersebut dan bisa melemahkan struktur.
Peralatan yang digunakan adalah kereta sorong, molen, ember, ruskam, sendok spesi, skop, mesin getar (Vibro), dan alat bantu lainnya yang mendukung untuk campuran agregat dipesan dari toko terdekat, sedangkan bahan yang digunakan pasir, semen, kerikil dan air. Tenaga kerja yang dibutuhkan pada pekerjaan struktur ini adalah :
1. Mandor 1 orang
2. Kepala Tukang Batu 1 orang
3. Tukang Batu 2 orang
4. Pekerja 10 orang
Pelaksanaan pekerjaan pengecoran dilapangan dilakukan sebanyak 10 pekerja, yang 2 orang menyiapkan campuran beton dengan menggunakan molen, 1 orang yang menyiapkan campuran beton dari molen ke gerobak sorong, 4 orang yang membawa hasil campuran, 2 orang melakukan pengecoran dan 1 orang menggetarkan struktur. Pengecoran dilakukan dari atas bekisting dengan 3 lapisan pengecoran dan digetarkan dengan menggunakan vibro.

• Pekerjaan Pengecoran di Lapangan dan Menurut SNI
Perencanaan pengecoran di lapangan sudah memenuhi SNI diantaranya beton dicor dekat pada posisi akhirnya tidak terjadinya segregasi akibat penanganan kembali atau pengaliran, pengecoran beton dilakukan dengan kecepatan sedemikian hingga beton selama pengecoran tersebut tetap dalam keadaan kental dan dengan mudah mengisi ruang di antara tulangan, Beton yang telah mengeras sebagian atau terkontaminasi oleh bahan lain tidak digunakan lagi pada pengecoran, beton yang ditambah air lagi atau beton yang telah dicampur ulang setelah pengikat awal tidak digunakan, kecuali bila disetujui oleh pengawas lapangan, setelah dimulainnya pengecoran, maka pengecoran dilakukan secara menerus sehingga memenuhi panel atau penampang pada batas dan sambungan yang ditetapkan hingga selesai bagaimana yang diizinkan atau dilarang. Permukaan atas cetakan vertikal secara umum datar, semua beton dipadatkan secara menyeluruh dengan menggunakan cara yang sesuai selama pengecoran dan dapat mengisi sekeliling tulangan dan seluruh celah dan masuk ke semua sudut cetakan.

4.1.4. Pekerjaan Pembengkoran
Pekerjaan pembongkaran bekisting struktur tersebut dilakukan setelah umur beton 1 atau 2 hari lebih. Pembongkaran bekisting dengan menggunakan linggis. Bekisting yang telah dibongkar dibersihkan dari sisa-sisa beton yang melekat dan disimpan pada tempat yang terlindung supaya dapat dipergunakan untuk pekerjaan selanjutnya. Tenaga kerja yang dibutuhkan untuk pekerjaan pembongkaran bekisting kolom ini dikerjakan oleh 2 orang pekerja.
• Pekerjaan Pembongkaran di Lapangan dan Menurut SNI
Pekerjaan pembongkaran dilapangan sudah sesuai dengan SNI cetakan dibongkar dengan cara-cara yang tidak mengurangi keamanan dan kemampuan struktur. Beton yang akan dipengaruhi oleh pembongkaran cetakan memiliki kekuatan cukup sehingga tidak akan rusak oleh operasi pembongkaran.

4.2. Pekerjaan Kolom Utama Lantai II
Kolom merupakan struktur dalam suatu bangunan, menahan beban-beban yang bekerja pada struktur tersebut. Kolom lantai II seluruhnya berjumlah 34 kolom. Jenis kolom yang direncanakan adalah kolom persegi dengan ukuran 40 x 40 .
Pekerjaan kolom utama lantai II dilaksanakan setelah pekerjaan ring balok dan plat lantai II selesai dilakukan. Adapun ruang lingkup pekerjaannya adalah sebagai berikut :
1. Pekerjaan pembesian;
2. Pekerjaan pemasangan bekisting;
3. Pekerjaan pengecoran;
4. Pekerjaan perawatan beton; dan
5. Pekerjaan pembukaan bekisting.

4.2.1. Pekerjaan Pembesian
Tahapan untuk pekerjaan balok adalah pekerjaan pembesian dimana pada pekerjaan ini dilakukan oleh tukang atau pekerja yang sudah ahli dan terampil dibidang pembesian struktur bangunan, selain itu dalam pekerjaan ini juga membutuhkan alat-alat diantara lain adalah sebagai berikut :
1. Gunting Besi/Pemotong Besi
2. Pembengkok besi (Bar Bender)
3. Meteran
4. Kakak tua
5. Sarung tangan/alat septy lainnya
Besi yang digunakan sebagai tulangan memanjang pada kolom lantai II adalah baja ulir berdiameter 14 mm dan 16 mm sedangkan untuk sengkang dipakai baja polos berdiameter Ø6 , berikut adalah jumlah sengkang dan penulangannya :
• Baja ulir D 16 berjumlah sebanyak 6 batang dengan ukuran 3,65 meter.
• Baja ulir D 14 berjumlah 2 batang batang dengan ukuran 3,65 meter.
• Baja polos Ø6 berjumlah 150
Menurut SNI diameter bengkokan yang diukur pada bagian dalam batang tulangan tidak boleh kurang dari 6db “diameter minimum”. Diameter dalam dari bengkokan untuk sengkang ikat tidak boleh kurang dari 4db “diameter minimum”. Perakitan dilakukan dilokasi pembangunan, hal ini dilakukan untuk memudahkan pekerjaan dan untuk menghemat waktu pelaksanaan. Adapun jumlah pekerja yang dilibatkan dalam pekerjaan pembesian kolom dan ring balk adalah :
1. Mandor 1 orang
2. Kepala Tukang Besi 2 orang
3. Tukang Besi 4 orang
4. Pekerja 10 orang

• Cara Pembengkokan
Bar Bender (pembengkok tulangan) adalah alat untuk membentuk baja tulangan sesuai dengan bentuk yang dibutuhkan. Pada proyek ini digunakan pembengkok manual. Pembengkok manual ini terbuat dari besi tulangan berdiameter 30 mm dan memiliki panjang 50 cm yang memiliki lubang pada ujungnya sesuai dengan ukuran tulangan yang akan dibengkokkan.
Semua tulangan harus dibengkokkan dalam keadaan dingin, kecuali bila diizinkan lain oleh Pengawas Lapangan.
Tulangan yang sebagian sudah tertanam didalam beton tidak boleh dibengkokkan dilapangan, kecuali seperti yang ditentukan pada gambar rencana, atau diizinkan oleh pengawas lapangan.
4.2.2. Pembuatan dan Pemasangan Bekisting
Bekisting merupakan cetakan beton yang mengisi adukan kedalamnya, sampai adukan beton mengeras dalam jangka waktu ± 1 hari. Mal yang terbuat dari triplex dan kayu yang disusun berbentuk persegi. Pemasangan bekisting ini dilakukan diatas tanah .
Pada pembentukan triplex mal dilakukan dengan beberapa sisi, sehingga mal dapat terbentuk persegi, sedangkan disisi atas dibiarkan terbuka untuk dapat dilakukan pengecoran. Antara triplex satu dengan yang lainnya harus rapat dan tidak terdapat rongga-rongga agar adukan beton tidak merembes keluar mal.
Pemasangan bekisting dilakukan setelah pemasangan tulangan untuk balok, bekisting tersebut sudah dirangkai sesuai dengan ukuran dan dimensinya, bekisting terbuat dari triplex. Peralatan yang dibutuhkan untuk memasang bekisting balok adalah sebagai berikut :
1. Gergaji
2. Palu
3. Meteran
4. Waterpas
5. Unting-unting
6. Selang air
7. Pinsil
8. Benang
Sedangkan bahan-bahan yang dibutuhkan adalah :
5. Multiplek 9 mm
6. Kayu Dolken
7. Kawat Beton
8. Minyak bekisting
Adapun jumlah pekerja yang dilibatkan dalam pekerjaan pembuatan bekesting balok adalah :
1. Mandor 1 orang
2. Kepala Tukang Kayu 1 orang
3. Tukang Kayu 4 orang
4. Pekerja 8 orang
Sebelum pemasangan bekisting terlebih dulu diikat batu tahu (beton decking) pada tulangan untuk menjaga ketebalan selimut beton sesuai dengan yang diinginkan. Dimensi beton decking adalah sebesar 6 x 6 x 2,5 cm.
Untuk menjaga kestabilan bekisting agar tetap vertikal, sejajar dan lurus, bekisting diperkuat dengan bantuan penyangga yang terbuat dari kayu berukuran 4/6 cm. Dan untuk menjaga ketahanan bekisting sewaktu dilakukan pengecoran maka di sepanjang kolom dikunci dengan rangkaian kayu yang dibuat berbentuk persegi dengan ukuran sebesar diameter kolom. Kayu yang digunakan untuk membuat pengunci ini berukuran 5/7 cm. Pengunci ini juga berguna dalam membuat kolom tegak lurus. Pengerjaan bekisting ini dilakukan oleh 3 orang tenaga kerja untuk satu kolomnya.

4.2.3. Pekerjaan Pengecoran
Pengecoran kolom dilakukan setelah bekisting kolom selesai dipasang. Alat – alat yang digunakan pada pengecoran kolom utama lantai II kantor Dinas Perhubungan, Informasi dan Komunikasi Kabupaten Aceh Timur adalah :
1. Mesin molen
2. Timba cor
3. Ruskam
4. Concrete Pump
Pengadukan campuran dilakukan dengan menggunakan readymix, mutu beton yang digunakan untuk pengecoran kolom adalah mutu beton K – 250.
Sebelum dimasukkan material terlebih dahulu tabung readymix dibasahi dengan air hingga merata. Tujuannya adalah agar air untuk pengadukan mortar tidak diresap oleh dinding tabung readymix. Pengadukan mortar dilakukan dengan menggunakan readymix. Kemudian hasil pengadukan dituangkan ke dalam pumping machine untuk selanjutnya dikucurkan ke kolom sebanyak ¾ tinggi kolom. Setelah selesai mengisi ¾ kolom, pekerja menusukkan tongkat kayu ke dalam kolom sambil menggoyang-goyangkan tulangan untuk memadatkan campuran mortar. Setelah selesai dengan pengecoran kolom lainnya, concrete pump kembali mengisi kolom yang sudah terisi ¾ ukuran volume total ini hingga penuh. Setelah itu kembali pekerja meneruskan kegiatan pemadatan yang sama. Selang waktu antara pengecoran pertama (3/4 volume total) dengan pengecoran kedua (1/4 volume total) memakan waktu 10 hingga 15 menit. Pengecoran dilakukan pada mulut kolom sehingga tinggi jatuh pengecoran setinggi 4 m. Hal ini tidak sesuai dengan PBI-1971 yang menyatakan bahwa kolom yang tingginya lebih dari 2 m maka harus digunakan jendela pengecoran, karena dapat mengakibatkan penumpukan agregat berdiameter besar pada bagian bawah.
Untuk satu buah kolom pekerjaannya ditangani oleh 2 orang pekerja yang bertugas memadatkan campuran dan 4 orang lainnya sebagai operator readymix dan concrete pump.
Dari hasil pengujian kuat tekan beton didapat bahwa kuat tekan beton rata–rata dari 4 benda uji untuk beton umur 28 hari adalah 267,78 kg/cm2. Dalam hal ini, kekuatan tekan beton telah memenuhi syarat yang telah ditentukan yaitu 250 kg/cm2. Untuk lebih jelasnya, dapat dilihat pada lampiran.

4.2. Pekerjaan Lantai II
Pekerjaan lantai dibuat untuk menahan beban-beban yang bekerja pada lantai tersebut pada saat pembuatan lantai kita harus meneliti dulu untuk apa lantai dibuat dan apa-apa saja beban yang bekerja pada lantai tersebut baik vertical, horizontal dan beban hidup. pemasangan bekisting, pembesian dan pekerjaan pengecoran

4.2.1 Pembuatan dan Pemasangan Bekisting
Bekisting merupakan cetakan beton yang mengisi adukan kedalamnya, sampai adukan beton mengeras dalam jangka waktu ± 1 hari. Mal yang terbuat dari triplex, disusun menurut bentuk lantai tersebut. Pemasangan bekisting ini dilakukan untuk proses pembuatan lantai dan bekisting ini ditahan oleh kayu atau bambu dibawahnya supaya bisa menahan beban seperti beban orang yang bekerja diatasnya, beban alat dan beban tumbukan.
Pada pembentukan mal dilakukan dengan beberapa sisi, sehingga mal dapat terbentuk sedemikian rupa Antara triplex satu dengan yang lainnya harus rapat dan tidak terdapat rongga-rongga agar adukan beton tidak merembes keluar mal.
Pemasangan bekisting dilakukan sebelum pemasangan tulangan lantai, bekisting tersebut sudah dirangkai sesuai dengan ukuran dan dimensinya, bekisting terbuat dari triplex. Peralatan yang dibutuhkan untuk memasang bekisting adalah gergaji, palu, meteran, waterpas, selang air, dan sebagainya. Sedangkan bahan yang dibutuhkan adalah triplex, kawat, paku, pensil, benang dan lain-lain. Tenaga kerja yang dibutuhkan untuk memasang bekisitng adalah 1 orang kepala tukang, 1 orang pengawas, dan 4 orang pekerja.

• Pekerjaan Bekisting di Lapangan dan Menurut SNI
Perencanaan bekisting di lapangan sudah sesuai dengan SNI, yaitu cetakan menghasilkan struktur akhir yang memenuhi bentuk, garis dan dimensi komponen struktur seperti disyaratkan pada gambar rencana dan spesifikasi, cetakan mantap dan cukup rapat untuk mencegah kebocoran mortal, cetakan diperkaku atau diikat dengan baik untuk mempertahankan posisi dan bentuk, cetakan dan tumpuannya direncanakan sehingga tidak merusak struktur yang dipasang sebelumnya, perencanaan cetakan disertai pertimbangan factor-faktor berikut :
a. Kecepatan dan metode pengecoran beton
b. Beban selama kontruksi, termasuk beban-beban vertical, horizontal, dan tumbukan.
c. Persyaratan-persyaratan cetakan khusus untuk kontruksi sengkang, plat lipat, kubah, beton arsitektural, atau elemen-elemen sejenis.

4.2.2. Pekerjaan Pembesian
Pekerjaan pembesian dilakukan dengan cara pembengkokan (membending) besi kemudian dirangkai dan dipasang pada tempat yang telah ditentukan sesuai dengan ukuran dan dimensinya. Alat yang digunakan adalah bending, pemotong besi, meteran, kakak tua, sedangkan bahan yang digunakan pada pekerjaan ini adalah besi Ø6, besi Ø8, besi Ø10, besi Ulir D12, besi Ulir D14 dan besi ulir D16. Pembengkokan dilapangan dilakukan tanpa adanya perkiraan, tenaga kerja yang digunakan 1 Kepala Tukang, 1 orang pengawas dan 10 orang pekerja.

• Cara Pembengkokan
Semua tulangan harus dibengkokkan dalam keadaan dingin, kecuali bila diizinkan lain oleh Pengawas Lapangan.
Tulangan yang sebagian sudah tertanam didalam beton tidak boleh dibengkokkan dilapangan, kecuali seperti yang ditentukan pada gambar rencana, atau diizinkan oleh pengawas lapangan.

• Kondisi Permukaan Baja Tulangan
Pada saat beton dicor, tulangan harus bebas dari lumpur, minyak, atau segala jenis zat pelapis bukan logam yang dapat mengurangi kepasitas lekatan. Pelapis epoksi yang sesuai dengan acuan baku.
Jika pembatasan jarak dan selimut beton minimum didasarkan pada diameter tulangan db, maka satu unit bundle tulangan harus diperhitungkan sebagai tulangan tunggal dengan diameter yang didapat dari luas ekuivalen penampang gabungan.

• Pekerjaan Pembesian di Lapangan dan Menurut SNI
Pada pekerjaan dilapangan pengbengkokan besi dan sengkang tidak sesuai dengan SNI karena dilapangan pembengkokan hanya diperkirakan saja oleh pekerja. Penempatan sambungan pada sengkang pada lapangan sesuai dengan SNI dengan cara membuat penempatan sambungan sengkang berselingan.

4.1.3 Pekerjaan Pengecoran
Pekerjaan pengecoran lantai harus dilakukan setelah pekerjaan pemasangan bekisting selesai dan pembesian selesai. Perbandingan campuran adalah 1 pc : 1 1/5 ps : 2 1/5 kr. hasil adukan semen terlihat bagus namun terkadang terlihat agak encer, hal itu sangat tidak baik suatu kontruksi, pengecoran harus dilakukan 3 lapisang dengan beberapa kutukan atau dengan menggunakan mesin getar untuk hasil yang lebih baik, apabila dilakukan dengan 1 lapisan saja akan menimbulkan kerikil akan menumpuk disisi bawah struktur tersebut dan bias melemahkan struktur.
Peralatan yang digunakan adalah gerobak sorong, molen, ember, ruskam, sendok spesi, skop, mesin getar (Vibro), dan alat bantu lainnya yang mendukung untuk campuran agrehgat dipesan dari took terdekat, sedangkan bahan yang digunakan pasir, semen, kerikil dan air. Tenaga kerja yang dibutuhkan pada pekerjaan struktur ini adalah 1 kepala tukang, 1 orang pengawas, 1 orang mandor, 1 orang tukang dan 10 orang pekerja.
Pelaksanaan pekerjaan pengecoran dilapangan dilakukan sebanyak 10 pekerja, yang 2 orang menyiapkan campuran beton dengan menggunakan molen, 1 orang yang menyiapkan campuran beton dari molen ke gerobak sorong, 4 orang yang membawa hasil campuran, 2 orang melakukan pengecoran dan 1 orang menggetarkan struktur. Pengecoran dilakukan dari atas bekisting dengan 3 lapisan pengecoran dan digetarkan dengan menggunakan vibro.

• Pekerjaan Pengecoran di Lapangan dan Menurut SNI
Perencanaan pengecoran di lapangan sudah memenuhi SNI diantaranya beton dicor dekat pada posisi akhirnya tidak terjadinya segregasi akibat penanganan kembali atau pengaliran, pengecoran beton dilakukan dengan kecepatan sedemekian hingga beton selama pengecoran tersebut tetap dalam keadaan kental dan dengan mudah mengisi ruang di antara tulangan, Beton yang telah mengeras sebagian atau terkontaminasi oleh bahan lain tidak digunakan lagi pada pengecoran, beton yang ditambah air lagi atau beton yang telah dicampur ulang setelah pengikat awal tidak digunakan, kecuali bila disetujui oleh pengawas lapangan, setelah dimulainnya pengecoran, maka pengecoran dilakukan secara menerus sehingga memenuhi panel atau penampang pada batas dan sambungan yang ditetapkan hingga selesai bagaimana yang diizinkan atau dilarang. Permukaan atas cetakan vertical secara umum datar, semua beton dipadatkan secara menyeluruh dengan menggunakan cara yang sesuai selama pengecoran dan dapat mengisi sekeliling tulangan dan seluruh celah dan masuk ke semua sudut cetakan.

JALAN RAYA

Jalan raya merupakan salah satu prasarana transportasi yang dapat menunjang pengembangan suatu wilayah. Semakin lancar transportasi maka semakin cepat suatu wilayah berkembang. Meningkatnya jumlah penduduk akan diikuti dengan meningkatnya kebutuhan sarana transportasi, sehingga perlu dilakukan perencanaan jalan yang sesuai dengan kebutuhan penduduk saat ini. Dewasa ini manusia telah mengenal sistem perencanaan jalan yang baik dan mudah dikerjakan serta pola perencanaannya yang makin sempurna.
Meskipun perencanaan sudah makin sempurna, namun kita sebagai orang teknik sipil tetap selalu dituntut untuk dapat merencanakan suatu lintasan jalan yang paling efektif dan efisien dari alternatif-alternatif yang ada, dengan tidak mengabaikan fungsi-fungsi dasar dari jalan. Oleh karena itu, dalam merencanakan suatu lintasan jalan, seorang teknik sipil harus mampu menyesuaikan keadaan di lapangan dengan teori-teori yang ada sehingga akan diperoleh hasil yang maksimal.
Dalam merencanakan suatu jalan raya diinginkan pekerjaan yang relatif mudah dengan menghindari pekerjaan galian (cut) dan timbunan (fill) yang besar. Dilain pihak kendaraan yang beroperasi di jalan raya menginginkan jalan yang relatif lurus, tidak ada tanjakan atau turunan. Objek keinginan itu sulit kita jumpai mengingat keadaan permukaan bumi yang relatif tidak datar, sehingga perlu dilakukan perencanaan geometrik jalan, yaitu perencanaan jalan yang dititik beratkan pada perencanaan bentuk fisik sehingga dapat memenuhi fungsi dasar dari jalan yaitu memberikan pelayanan yang optimum pada arus lalu lintas. Faktor yang menjadi dasar perencanaan geometrik adalah sifat gerakan, ukuran kendaraan, sifat pengemudi dalam mengendalikan gerak kendaraannya, serta karakteristik arus lalu lintas. Hal – hal tersebut haruslah menjadi bahan pertimbangan perencana sehingga dihasilkan bentuk dan ukuran jalan, serta ruang gerak kendaraan yang memenuhi tingkat kenyamanan dan keamanan yang diharapkan.
Selain itu, juga harus diperhatikan elemen – elemen dari perencanaan geometrik jalan, yaitu :

• Alinyemen horizontal

Pada gambar alinyemen horizontal, akan terlihat apakah jalan tersebut merupakan jalan lurus, menikung ke kiri, atau ke kanan dan akan digambarkan sumbu jalan pada suatu countur yang terdiri dari garis lurus, lengkung berbentuk lingkaran serta lengkung peralihan dari bentuk lurus ke bentuk busur lingkaran. Pada perencanaan ini dititik beratkan pada pemilihan letak dan panjang dari bagian – bagian trase jalan, sesuai dengan kondisi medan sehingga terpenuhi kebutuhan akan pergerakkan lalu lintas dan kenyamanannya.

• Alinyemen vertikal

Pada gambar alinyemen vertikal, akan terlihat apakah jalan tersebut tanpa kelandaian, mendaki atau menurun. Pada perencanaan ini, dipertimbangkan bagaimana meletakkan sumbu jalan sesuai dengan kondisi medan dengan memperhatikan fungsi - fungsi dasar dari jalan tersebut. Pemilihan alinyemen vertikal berkaitan pula dengan pekerjaan tanah yang mungkin timbul akibat adanya galian dan timbunan yang harus dilakukan

• Penampang melintang jalan

Bagian – bagian dari jalan seperti lebar dan jumlah lajur, ada atau tidaknya median, drainase permukaan, kelandaian serta galian dan timbunan. Koordinasi yang baik antara bentuk alinyemen horizontal dan vertikal akan memberikan keamanan dan kenyamanan pada pemakai jalan.

• Perkerasan jalan
Lapisan perkerasan berfungsi untuk menerima dan menyebarkan beban lalu lintas tanpa menimbulkan kerusakan yang berarti pada konstruksi jalan itu sendiri. Berdasarkan fungsinya, jalan dapat dibedakan atas :
1. Jalan Arteri : Jalan yang melayani angkutan utama dengan ciri-ciri perjalanan jarak jauh, kecepatan rata-rata tinggi dan jumlah jalan masuk dibatasi secara efisien.
2. Jalan Kolektor : Jalan yang melayani pengumpulan/pembagian dengan ciri-ciri, perjalanan jarak sedang, kecepatan rata-rata sedang, dan jumlah masuk dibatasi.
3. Jalan Lokal : Jalan yang melayani angkutan setempat dengan ciri-ciri perjalanan jarak dekat, kecepatan rata-rata rendah, dan jalan masuk tidak dibatasi.

1.2 Maksud dan Tujuan

Tujuan dari perencanaan suatu jalan raya adalah untuk merencanakan suatu lintasan dan dimensi yang sesuai dengan Peraturan Perencanaan Geometrik Jalan Raya (PPGJR) No. 13 tahun 1970, sehingga dapat menjamin keamanan dan kelancaran lalu lintas. Dari perencanaan itu juga didapat suatu dokumen yang dapat memperhitungkan bobot pekerjaan baik galian maupun timbunan, pekerjaan tanah dan sebagainya sehingga bisa dilakukan perencanaan yang seekonomis mungkin.

Faktor-faktor yang mempengaruhi perencanaan geometrik jalan raya adalah :

Kelas Jalan
Kecapatan rencana
Standar Perencanaan
Penampang melintang
Volume Lalu lintas
Keadaan Topografi
Alinyemen Horizontal
Alinyemen Vertikal
Bentuk Tikungan

1.2.1 Kelas jalan

Jalan dibagi dalam kelas-kelas yang penempatannya didasarkan pada fungsinya juga dipertimbangkan pada besarnya volume serta sifat lalu lintas yang diharapkan akan menggunakan jalan yang bersangkutan.

1.2.2 Volume lalu lintas

Volume lalu lintas dinyatakan dalam Satuan Mobil Penumpang (SMP) yang besarnya menunjukkan jumlah lalu lintas harian rata-rata (LHR) untuk kedua jurusan.

1.2.3 Kecepatan rencana

Kecepatan rencana yang dimaksud adalah kecepatan maksimum yang diizinkan pada jalan yang akan direncanakan sehingga tidak menimbulkan bahaya bagi pemakai jalan tersebut. Dalam hal ini harus disesuaikan dengan tipe jalan yang direncanakan.

1.2.4 Keadaan topografi

Untuk memperkecil biaya pembangunan, maka suatu standar perlu disesuaikan dengan keadaan topografi. Dalam hal ini, jenis medan dibagi dalam tiga golongan umum yang dibedakan menurut besarnya lereng melintang dalam arah kurang lebih tegak lurus sumbu jalan.

Tabel 1.1 Klasifikasi Medan Dan Besanya Lereng Melintang

Golongan Medan Lereng Melintang
Datar (D) 0 sampai 9%
Perbukitan (B) 10 sampai 24,9%
Pegunungan (G) > 25%

Adapun pengaruh keadaan medan terhadap perencanaan suatu jalan raya meliputi hal-hal sebagai berikut :
a. Tikungan : Jari-jari tikungan pada pelebaran perkerasan diambil sedemikian rupa sehingga terjamin keamanan dan kenyamanan jalannya kendaraan dan pandangan bebas harus cukup luas.
b. Tanjakan : Dalam perencanaan diusahakan agar tanjakan dibuat dengan kelandaian sekecil mungkin.

1.2.5 Alinyemen horizontal

Alinyemen horizontal adalah garis proyeksi sumbu jalan yang tegak lurus pada bidang peta yang terdiri dari garis – garis lurus yang dihubungkan dengan garis – garis lengkung yang dapat berupa busur lingkaran ditambah busur peralihan ataupun lingkaran saja.
Bagian yang sangat kritis pada alinyemen horizontal adalah bagian tikungan, dimana terdapat gaya yang dapat melemparkan kendaraan ke luar daerah tikungan yang disebut gaya sentrifugal. Atas dasar itu maka perencanaan tikungan diusahakan agar dapat memberikan keamanan dan kenyamanan, sehingga perlu dipertimbangkan hal-hal berikut:
a. Jari-jari lengkung minimum untuk setiap kecapatan rencana ditentukan berdasarkan miring maksimum denagn koefisien gesekan melintang maksimum.
b. Lengkung peralihan adalah lengkung pada tikungan yang dipergunakan untuk mengadakan peralihan dari bagian lurus ke bagian lengkung atau sebaliknya.
1.2.6 Alinyemen vertikal (profil memanjang)

Alinyemen vertikal adalah biang tegak yang melalui sumbu jalan atau proyeksi tegak lurus bidang gambar. Profil ini menggambarkan tinggi rendahnya jalan terhadap muka tanah asli, sehingga memberikan gambaran terhadap kemampuan kendaraan dalam keadaan naik dan bermuatan penuh (dimana truck digunakan sebagi kendaraan standar), alinyemen vertikal sangat erat hubungannya dengan besar biaya pembangunan, biaya penggunaan, maka pada alinyemen vertikal yang merupakan bagian kritis justru pada bagian yang lurus.

Landai maksimum

Kelandaian maksimum hanya digunakan bila pertimbangan biaya sangat memaksa dan hanya untuk jarak yang pendek. Panjang kritis landai dimaksudkan adalah panjang yang masih dapat diterima tanpa mengakibat gangguan jalannya arus lalu lintas (panjang ini mengakibatkan pengurangan kecepatan maksimum 25 km/jam). Bila pertimbangan biaya memaksa, maka panjang kritis dapat dilampaui dengan syarat ada jalur khusus untuk kendaraan berat.

Landai Minimum
Pada setiap penggantian landai dibuat lengkung vertikal yang memenuhi keamanan, kenyamanan, dan drainase yang baik. Disini digunakan lengkung parabola biasa.

1.2.7 Penampang melintang

Penampang melintang jalan adalah pemotongan suatu jalan tegak lurus sumbu jalan, yang menunjukkan bentuk serta susunan bagian – bagian jalan dalam arah melintang.
Penampang melintang jalan yang digunakan harus sesuai dengan kelas jalan dan kebutuhan lalu lintas yang dilayaninya. Penampang melintang utama dapat dilihat pada daftar I PPGJR.
Lebar perkerasan

Pada umumnya lebar perkerasan ditentukan berdasarkan lebar jalur lalu lintas normal yang besarnya adalah 3,5 meter sebagaimana tercantum dalam daftar I PPGJR, kecuali:

- Jalan penghubung dan jalan kelas II c = 3,00 meter
- Jalan utama = 3,75 meter

Lebar bahu

Untuk jalan kelas III lebar bahu jalan minimum adalah 1,50 – 2,50 m untuk semua jenis medan.

Drainase

Drainase merupakan bagian yang sangat penting pada suatu jalan, seperti saluran tepi, saluran melintang, dan sebagainya, harus direncanakan berdasarkan data hidrologis setempat seperti intensitas hujan, lamanya frekuensi hujan, serta sifat daerah aliran.

Kebebasan pada jalan raya

Kebebasan yang dimaksud adalah keleluasaan pengemudi di jalan raya dengan tidak menghadapi rintangan. Lebar kebebasan ini merupakan bagian kiri kanan jalan yang merupakan bagian dari jalan (PPGJR No. 13/1970).

1.2.8 Bentuk Tikungan

Bentuk tikungan pada suatu jalan raya ditentukan oleh tiga faktor :

1. Sudut tangent (∆) yang besarnya dapat diukur langsung pada peta
2. Kecepatan rencana, tergantung dari kelas jalan yang akan direncanakan.
3. Jari – jari kelengkungan
1.3 Ruang Lingkup Perencanaan

Dalam tugas perencanaan ini, perhitungan dilakukan terdiri dari beberapa tinjauan. Peninjauan ini meliputi :

1. Penentuan lintasan
• Jarak lintasan
• Sudut azimut
• Kemiringan jalan
• Elevasi jalan pada titik kritis
• Luas tampang

2. Alinyemen horizontal

• Spiral Circle Spiral, digunakan pada tikungan yang mempunyai jari – jari kecil dan sudut tangen yang relatif besar.
• Spiral-Spiral, digunakan pada tikungan yang mempunyai jari – jari kecil dan sudut tangen yang relatif kecil.

3. Alinyemen vertikal

• Lengkung vertikal cembung
• Lengkung vertikal cekung

4. Galian dan timbunan
5. Pekerjaan Tanah/kubikasi.
6. Perencanaan perkerasan jalan.

BAB I
PENDAHULUAN

1.1        Latar Belakang

Jalan raya merupakan salah satu prasarana transportasi yang dapat menunjang pengembangan suatu wilayah. Semakin lancar transportasi maka semakin cepat suatu wilayah berkembang. Meningkatnya jumlah penduduk akan diikuti dengan meningkatnya kebutuhan sarana transportasi, sehingga perlu dilakukan perencanaan jalan yang sesuai dengan kebutuhan penduduk saat ini. Dewasa ini manusia telah mengenal sistem perencanaan jalan yang baik dan mudah dikerjakan serta pola perencanaannya yang makin sempurna.

Meskipun perencanaan sudah makin sempurna, namun kita sebagai orang teknik sipil tetap selalu dituntut untuk dapat merencanakan suatu lintasan jalan yang paling efektif dan efisien dari alternatif-alternatif yang ada, dengan tidak mengabaikan fungsi-fungsi dasar dari jalan. Oleh karena itu, dalam merencanakan suatu lintasan jalan, seorang teknik sipil harus mampu menyesuaikan keadaan di lapangan dengan teori-teori yang ada sehingga akan diperoleh hasil yang maksimal.

            Dalam merencanakan suatu jalan raya diinginkan pekerjaan yang relatif mudah dengan menghindari pekerjaan galian (cut) dan timbunan (fill) yang besar. Dilain pihak kendaraan yang beroperasi di jalan raya menginginkan jalan yang relatif lurus, tidak ada tanjakan atau turunan. Objek keinginan itu sulit kita jumpai mengingat keadaan permukaan bumi yang relatif tidak datar, sehingga perlu dilakukan perencanaan geometrik jalan, yaitu perencanaan jalan yang dititik beratkan pada perencanaan bentuk fisik sehingga dapat memenuhi fungsi dasar dari jalan yaitu memberikan pelayanan yang optimum pada arus lalu lintas. Faktor yang menjadi dasar perencanaan geometrik adalah sifat gerakan, ukuran kendaraan, sifat pengemudi dalam mengendalikan gerak kendaraannya, serta karakteristik arus lalu lintas. Hal – hal tersebut haruslah menjadi bahan pertimbangan perencana sehingga dihasilkan bentuk dan ukuran jalan, serta ruang gerak kendaraan yang memenuhi tingkat kenyamanan dan keamanan yang diharapkan.

Selain itu, juga harus diperhatikan elemen – elemen dari perencanaan  geometrik jalan, yaitu :

·  Alinyemen horizontal

Pada gambar alinyemen horizontal, akan terlihat apakah jalan tersebut merupakan jalan lurus, menikung ke kiri, atau ke kanan dan akan digambarkan sumbu jalan pada suatu countur yang terdiri dari garis lurus, lengkung berbentuk lingkaran serta lengkung peralihan dari bentuk lurus ke bentuk busur lingkaran. Pada perencanaan ini dititik beratkan pada pemilihan letak dan panjang dari bagian – bagian trase jalan, sesuai dengan kondisi medan sehingga terpenuhi kebutuhan akan pergerakkan lalu lintas dan kenyamanannya.

·  Alinyemen vertical

Pada gambar alinyemen vertikal, akan terlihat apakah jalan tersebut tanpa kelandaian, mendaki atau menurun. Pada perencanaan ini, dipertimbangkan bagaimana meletakkan sumbu jalan sesuai dengan kondisi medan dengan memperhatikan fungsi - fungsi dasar dari jalan tersebut. Pemilihan alinyemen vertikal berkaitan pula dengan pekerjaan tanah yang mungkin timbul akibat adanya galian dan timbunan yang harus dilakukan

·  Penampang melintang jalan

      Bagian – bagian dari jalan seperti lebar dan jumlah lajur, ada atau tidaknya median, drainase permukaan, kelandaian serta galian dan timbunan.
Koordinasi yang baik antara bentuk alinyemen horizontal dan vertikal akan memberikan keamanan dan kenyamanan pada pemakai jalan.

1.2        Maksud dan Tujuan

Tujuan dari perencanaan suatu jalan raya adalah untuk merencanakan suatu lintasan dan dimensi yang sesuai dengan Peraturan Perencanaan Geometrik Jalan Raya (PPGJR) No. 13 tahun 1970, sehingga dapat menjamin keamanan dan kelancaran lalu lintas. Dari perencanaan itu juga didapat suatu dokumen yang dapat memperhitungkan bobot pekerjaan baik galian maupun timbunan, pekerjaan tanah dan sebagainya sehingga bisa dilakukan perencanaan yang seekonomis mungkin.

            Faktor-faktor yang mempengaruhi perencanaan geometrik jalan raya adalah:

v  Kelas Jalan
v  Kecapatan rencana
v  Standar Perencanaan
v  Penampang melintang
v  Volume Lalu lintas
v  Keadaan Topografi
v  Alinyemen Horizontal
v  Alinyemen Vertikal
v  Bentuk Tikungan

1.2.1        Kelas jalan

Jalan dibagi dalam kelas-kelas yang penempatannya didasarkan pada fungsinya juga dipertimbangkan pada besarnya volume serta sifat lalu lintas yang diharapkan akan menggunakan jalan yang bersangkutan.


1.2.2        Volume lalu lintas

  Volume lalu lintas dinyatakan dalam Satuan Mobil Penumpang (SMP) yang besarnya menunjukkan jumlah lalu lintas harian rata-rata (LHR) untuk kedua jurusan.

1.2.3        Kecepatan rencana

Kecepatan rencana yang dimaksud adalah kecepatan maksimum yang diizinkan pada jalan yang akan direncanakan sehingga tidak menimbulkan bahaya bagi pemakai jalan tersebut. Dalam hal ini harus disesuaikan dengan tipe jalan yang direncanakan.

1.2.4        Keadaan topografi

Untuk memperkecil biaya pembangunan, maka suatu standar perlu disesuaikan dengan keadaan topografi. Dalam hal ini, jenis medan dibagi dalam tiga golongan umum yang dibedakan menurut besarnya lereng melintang dalam arah kurang lebih tegak lurus sumbu jalan.

            Tabel 1.1 Klasifikasi Medan Dan Besanya Lereng Melintang

Golongan Medan
Lereng Melintang
Datar (D)
0    sampai    9%
Perbukitan (B)
10  sampai  24,9%
Pegunungan (G)
> 25%

            Adapun pengaruh keadaan medan terhadap perencanaan suatu jalan raya meliputi hal-hal sebagai berikut :
a.   Tikungan     : Jari-jari tikungan pada pelebaran perkerasan diambil sedemikian rupa sehingga terjamin keamanan dan kenyamanan jalannya kendaraan dan pandangan bebas harus cukup luas.        
b.  Tanjakan      : Dalam perencanaan diusahakan agar tanjakan dibuat dengan   kelandaian sekecil mungkin.

1.2.5        Alinyemen horizontal

Alinyemen horizontal adalah garis proyeksi sumbu jalan yang tegak lurus pada bidang peta yang terdiri dari garis – garis lurus yang dihubungkan dengan garis – garis lengkung yang dapat berupa busur lingkaran ditambah busur peralihan ataupun lingkaran saja.
Bagian yang sangat kritis pada alinyemen horizontal adalah bagian tikungan, dimana terdapat gaya yang dapat melemparkan kendaraan ke luar daerah tikungan yang disebut gaya sentrifugal. Atas dasar itu maka perencanaan tikungan diusahakan agar dapat memberikan keamanan dan kenyamanan, sehingga perlu dipertimbangkan hal-hal berikut:
a.       Jari-jari lengkung minimum untuk setiap kecapatan rencana ditentukan berdasarkan miring maksimum denagn koefisien gesekan melintang maksimum. 
b.      Lengkung peralihan adalah lengkung pada tikungan yang dipergunakan untuk mengadakan peralihan dari bagian lurus ke bagian lengkung atau sebaliknya.

1.2.6        Alinyemen vertikal (profil memanjang)

Alinyemen vertikal adalah biang tegak yang melalui sumbu jalan atau proyeksi tegak lurus bidang gambar. Profil ini menggambarkan tinggi rendahnya jalan terhadap muka tanah asli, sehingga memberikan gambaran terhadap kemampuan kendaraan dalam keadaan naik dan bermuatan penuh (dimana truck digunakan sebagi kendaraan standar), alinyemen vertikal sangat erat hubungannya dengan besar biaya pembangunan, biaya penggunaan, maka pada alinyemen vertikal yang merupakan bagian kritis justru pada bagian yang lurus.


A. Landai maksimum

Kelandaian maksimum hanya digunakan bila pertimbangan biaya sangat memaksa dan hanya untuk jarak yang pendek. Panjang kritis landai dimaksudkan adalah panjang yang masih dapat diterima tanpa mengakibat gangguan jalannya arus lalu lintas (panjang ini mengakibatkan pengurangan kecepatan maksimum 25 km/jam). Bila pertimbangan biaya memaksa, maka panjang kritis dapat dilampaui dengan syarat ada jalur khusus untuk kendaraan berat.

B. Landai Minimum
               Pada setiap penggantian landai dibuat lengkung vertikal yang memenuhi keamanan, kenyamanan, dan drainase yang baik. Disini digunakan lengkung parabola biasa.

1.2.7        Penampang melintang

               Penampang melintang jalan adalah pemotongan suatu jalan tegak lurus sumbu jalan, yang menunjukkan bentuk serta susunan bagian – bagian jalan dalam arah melintang.

               Penampang melintang jalan yang digunakan harus sesuai dengan kelas jalan dan kebutuhan lalu lintas yang dilayaninya. Penampang melintang utama dapat dilihat pada daftar I PPGJR.

a.       Lebar perkerasan

      Pada umumnya lebar perkerasan ditentukan berdasarkan lebar jalur lalu lintas normal yang besarnya adalah 3,5 meter sebagaimana tercantum dalam daftar I PPGJR, kecuali:

               -        Jalan penghubung dan jalan kelas II c            = 3,00 meter

               -        Jalan utama                                                     = 3,75 meter
b.      Lebar bahu

      Untuk jalan kelas III lebar bahu jalan minimum adalah 1,50 – 2,50 m untuk semua jenis medan.

c.       Drainase

      Drainase merupakan bagian yang sangat penting pada suatu jalan, seperti saluran tepi, saluran melintang, dan sebagainya, harus direncanakan berdasarkan data hidrologis setempat seperti intensitas hujan, lamanya frekuensi hujan, serta sifat daerah aliran.

d.      Kebebasan pada jalan raya

      Kebebasan yang dimaksud adalah keleluasaan pengemudi di jalan raya dengan tidak menghadapi rintangan. Lebar kebebasan ini merupakan bagian kiri kanan jalan yang merupakan bagian dari jalan (PPGJR No. 13/1970).

1.2.8        Bentuk Tikungan

               Bentuk tikungan pada suatu jalan raya ditentukan oleh tiga faktor:

1.      Sudut tangent (∆) yang besarnya dapat diukur langsung pada peta
2.      Kecepatan rencana, tergantung dari kelas jalan yang akan direncanakan.
3.      Jari – jari kelengkungan

1.3          Ruang Lingkup Perencanaan

    Dalam tugas perencanaan ini, perhitungan dilakukan terdiri dari beberapa tinjauan. Peninjauan ini meliputi :

1.      Penentuan lintasan
·  Jarak lintasan
·  Sudut azimut
·  Kemiringan jalan
·  Elevasi jalan pada titik kritis
·  Luas tampang

2.      Alinyemen horizontal

·  Spiral Circle Spiral, digunakan pada tikungan yang mempunyai jari – jari kecil dan sudut tangen yang relatif besar.
·  Full Circle, digunakan pada tikungan yang mempunyai jari – jari besar dan sudut tangen yang relatif kecil.

3.      Alinyemen vertikal

·  Lengkung vertikal cembung
·  Lengkung vertikal cekung

4.      Galian dan timbunan
5.      Pekerjaan Tanah/kubikasi.










                                                         


BAB II
TINJAUAN KEPUSTAKAAN

2.1        Bagian Perencanaan

    Dalam tugas perencanaan ini, perhitungan dilakukan terdiri dari beberapa tinjauan. Peninjauan ini meliputi penentuan lintasan, alinyemen horizontal, alinyemen vertikal, penampang melintang, dan kubikasi.

2.2        Rumus-Rumus Yang Digunakan
2.2.1        Alinyemen horizontal (Berdasarkan rumus-rumus di buku ”Dasar-Dasar Perencanaan Geometrik Jalan” oleh Silvia Sukirman).

·  Spiral Circle Spiral
 θs =               
     θc = ∆ - 2 θs
     Lc =
             L   = Lc + 2Ls
             p   =
             k   =
       Ts = (Rc + p) tan ½ ∆ + k
       Es =

dengan:
Rc  = jari–jari lengkung yang direncanakan (m)
∆    = sudut tangen
θs   = sudut putar
Es   = jarak PI ke lengkung peralihan (m)
Ls   = panjang lengkung spiral (m)
Lc   = panjang lengkung circle (m)

·  Full circle

      TC = RC tan ½ ∆
      EC = TC tan 1/4
      LC = 0,01745 ∆ RC

dengan:
R         = Jari–jari lengkung minimum (m)
∆          = Sudut tangen
Ec        = Jarak PI ke lengkung peralihan (m)
Lc        = Panjang bagian tikungan (m)
Tc        = Jarak antara TC dan PI (m)

2.2.2        Alinyemen vertikal (Berdasarkan rumus-rumus di buku ”Perencanaan Trase Jalan Raya” oleh Bukhari R.A dan Maimunah, tahun 2005).

·  Lengkung vertikal cembung
            A   = g1- g2
Ev =
Lv diambil berdasarkan gambar 5.1  (Buku: Perencanaan Trase Jalan Raya oleh Bukhari R.A dan Maimunah, tahun 2005, hal: 34)

dengan:

Ev        = Pergeseran vertikal dari titik PPV ke bagian lengkung
g1        = aljabar kelandaian lintasan pertama
g2        = aljabar kelandaian lintasan kedua
A         = perbedaan aljabar kelandaian (%)
Lv        = panjang lengkung (m)

·  Lengkung vertikal cekung

Rumus-rumus yang digunakan sama dengan lengkung vertikal cembung, namun pada saat penentuan Lv digunakan gambar 5.2 (Buku: Perencanaan Trase Jalan Raya oleh Bukhari R.A dan Maimunah,tahun 2005, hal: 34)

2.2.3        Galian (cut) dan timbunan (fill)

Rumus-rumus yang digunakan adalah rumus-rumus luas segitiga, segiempat, trapesium dan untuk keadaan tertentu dipakai rumus interpolasi serta untuk perhitungan volume digunakan rumus kubus dan kerucut.

·  Luas segiempat
            A         =  P x L
dengan:
A         = luas segiempat (m2)
P          = panjang (m)
L          = lebar (m)

·  Luas segitiga
      A         =  ½ a x t
dengan:
A         = luas segitiga (m2)
a          = panjang sisi alas (m)
t           = panjang sisi tegak (m)

·  Luas trapesium
      A         =  ½ (a + b) x t
dengan:
A         = luas segitiga (m2)
a          = panjang sisi atas (m)
b          = panjang sisi bawah (m)
t           = panjang sisi tegak (m)

·  Interpolasi
            a : b     = (L-x) : x
                ax    = b. L – b . x
        ax + bx    = b. L
        (a + b)x    = b. L
                  x    =



2.2.4        Stationing (STA)

(Berdasarkan rumus-rumus di buku ”Dasar-Dasar Perencanaan Geometrik Jalan” oleh Silvia Sukirman).


 





Sta TC = Sta titik A + d1 – T
Sta CT = Sta TC + Lc
Sta TS = Sta CT + (d2 – T – Ts)
Sta SC = Sta TS + Ls
Sta CS = Sta SC + Lc
Sta ST = Sta CS + Ls

2.2.5        Perkerasan jalan
Dalam perencanaan tebal lapisan perkerasan dibituhkan faktor-faktor yang dapat mempengaruhi fungsi pelayanan konstruksi pelayanan konstruksi perkerasan jalan seperti :
1.      Data Kendaraan.
2.      Klasifikasi Jalan
3.      Umur Rencana
4.      Data Pertumbuhan Laju Lalu lintas
5.      Iklim/Curah hujan
6.      Data Kelandaian
7.      Jenis Lapisan perkerasan, lapisan pondasi atas dan lapisan pondasi bawah yang akan digunakan pada perkerasan
8.      Data CBR




























BAB III
METODOLOGI

3.1    Penentuan Lintasan (Trase Jalan)

            Trase rencana lintasan ditentukan berdasarkan peta topografi yang disediakan, dimana titik asal (origin) dan tujuan (destination) telah ditentukan, kemudian dilakukan pencarian lintasan. Langkah awal adalah dengan memperhatikan situasi medan, countur tersebut terus ditelusuri untuk mencari lintasan yang sesuai dengan PPGJR (Peraturan Perencanaan Geometrik Jalan Raya) No. 13 Tahun 1970 serta ketentuan – ketentuan lain yang diberlakukan dalam tugas perencanaan ini.

  Perhitungan pertama dilakukan dengan cara menentukan titik koordinat, sehingga kita bisa mengetahui jarak masing-masing pias lintasan dan sudut azimut yang dibentuk. Dari peta countur bisa diketahui elavasi muka tanah, sehingga bisa ditentukan kemiringan masing-masing lintasan. Selanjutnya dicari elevasi jalan di masing-masing titik kritis, sehingga akan diketahui pada titik tersebut berupa galian ataupun timbunan. Adapun galian dan timbunan ini tidak boleh melebihi syarat yang telah ditentukan yaitu, galian harus lebih kecil dari 8 meter dan timbunan harus lebih kecil dari 5 meter.

  Dengan adanya titik kritis ini, maka bisa digambarkan sketsa lintasan sehingga dari sketsa lintasan tersebut bisa diketahui luas penampang galian dan timbunan. Jika luas penampang galian dan timbunan tidak sama dengan nol, maka harus dilakukan penyesuaian lintasan sehingga sama dengan nol ataupun mendekati nol dengan batas toleransi 10%.

  Akibat penyesuaian lintasan ini, maka kemiringan lintasan dan keadaan muka jalan dimasing-masing titik akan berubah. Karena terjadi perubahan maka kemiringan dan keadaan muka jalan harus dihitung kembali. 

3.2    Merencanakan Alinyemen Horizontal

  Perencanaan alinyemen horizontal merupakan perencanaan tikungan lengkap dengan komponen-komponennya. Pada perencanaan ini tikungan yang direncanakan ada dua jenis yaitu Spiral-Circle-Spiral dan Full Circle. Spiral-Circle-Spiral direncanakan untuk tikungan yang sudut tangennya relatif besar, sedangkan Full Circle direncanakan dengan  jari-jari besar dan sudut tangen yang relatif besar.
              
a.       Bentuk Tikungan Spiral – Circle – Spiral (SCS)

      Dengan data-data yang diketahui:
      V      = 60 km/jam
      en        = 2 %
·  R direncanakan dengan ketentuan R yang diambil pada table 4.7 (Buku: dasar-dasar perencanaan geometric jalan raya oleh Silvia Sukirman, hal 113). Syarat pengambilan R, nilai Lc > 20 m. Dengan adanya R maka bisa diketahui e dan Ls-nya.
·  Dihitung besar sudut spiral (θs)
·  Dihitung besar pusat busur lingkaran (θc)
·  Dihitung panjang lengkung lingkaran (Lc)
·  Dihitung masing-masing untuk nilai L,p,k
·  Dihitung nilai Ts
·  Dihitung nilai Es




            Gambar bentuk tikungan Spiral – Circle – Spiral









        





Keterangan :
            R = jari – jari lengkung yang direncanakan (m)
            = sudut tangent
            es = sudut putar
            Es = jarak PI ke lengkung peralihan (m)
            Ls = panjang lengkung spiral (m)
            Lc = panjang lengkung circle (m)
                                       



b .  Full Circle

      Dengan data-data yang diketahui:
      V      = 60 km/jam
      en        = 2 %
·  R direncanakan dengan ketentuan R yang diambil pada table 4.7 (Buku: dasar-dasar perencanaan geometric jalan raya oleh Silvia Sukirman, hal 113). Syarat pengambilan R, nilai Lc > 20 m. Dengan adanya R maka bisa diketahui e dan Ls-nya.
·  Dihitung nilai Tc
·  Dihitung nilai Ec
·  Dihitung nilai Ec

Gambar bentuk tikungan Full Circle (FC):






                                                    
                                                                         
                                                                  




Dengan :
               Rc     = Jari – jari lengkung minimum (m).
                    =  Sudut tangent yang diukur dari gambar trase.
               Ec     = Jarak PI ke lengkung peralihan (m).
               Lc     = Panjang bagian tikungan (m).
               TC    = Jarak antara TC dan PI (m).

3.3  Merencanakan Alinyemen Vertikal

Alinyemen vertikal merupakan bidang tegak yang melalui sumbu jalan atau proyeksi tegak lurus bidang gambar. Alinyemen vertikal (lengkung vertikal) ini ada dua yaitu lekung vertikal cekung dan lengkung vertikal cembung. Lengkung vertikal cekung adalah lengkung dimana titik perpotongan antara kedua tangen berada dibawah permukaan jalan. Lengkung vertikal cembung adalah lengkung dimana titik perpotongan antara kedua tangen berada diatas permukaan jalan yang bersangkutan.

Langkah-langkah perhitungannya:

1.   Untuk lengkung vertikal cekung

·  Dihitung perbedaan aljabar kelandaian (A)
·  Dengan diketahui nilai A dan V, maka dari gambar 5.2 (Buku: perencanaan trase jalan raya oleh Bukhari R.A dan Maimunah, hal:34) didapat nilai Lv
·  Kemudian dihitung nilai Ev

2. Untuk lengkung vertikal cembung
·  Hitung perbedaan aljabar kelandaian (A), dengan rumus A = g1-g2
·  Dengan diketahui nilai A dan V, maka dari gambar 5.1 (Buku: perencanaan trase jalan raya oleh Bukhari R.A dan Maimunah, hal:34) didapat nilai Lv
·  Kemudian dihitung nilai Ev

3.4    Perhitungan Galian (Cut) dan Timbunan (Fill)

            Dimulai dengan cara menggambarkan potongan penampang melintang jalan disetiap titik tinjauan dan titik kritis, lalu mengambil elevasi dari peta countur selebar permukan jalan ditambah bahu dan elevasi muka jalan yang telah dihitung. Maka, dengan data-data tersebut bisa dihitung luas permukaan penampang melintangnya. Namun sebelumnya ditentukan dahulu kemiringan permukaan tanah pada tepi bahu yaitu 1 : 2.

            Untuk potongan penampang melintang jalan yang ada galian dan timbunan nya pada satu titik, maka perlu dilakukan interpolasi untuk mengetahui batas galian dan timbunan. Setelah mengetahui luas penampang melintangnya, maka bisa dilakukan perhitungan volume yaitu dengan cara mengalikan luas penampang melintang jalan dengan jarak per pias yang ditinjau. Jika pada pias tersebut sebagian galian dan sebagian timbunan maka harus dilakukan kembali interpolasi.

            Rumus-rumus yang digunakan untuk menghitung luas adalah rumus luas persegi panjang dan rumus luas segitiga. Sedangkan volume dihitung juga dengan menggunakan pendekatan-pendekatan bidang persegi panjang, bidang segitiga dan bidang kerucut.

3.5  Penomoran Panjang Jalan (Stasioning)

            Sta jalan dimulai dari 0+000 m yang berarti 0 km dan 0 m dari awal pekerjaan. Sta 19+870 berarti lokasi jalan terletak pada jarak 19 km dan 870 meter dari awal pekerjaan. Jika tidak terjadi perubahan arah tangen pada alinyemen horizontal maupun alinyemen vertikal, maka penomoran selanjutnya dilakukan:
·  setiap 100 m pada medan datar
·  setiap 50 m pada medan bukit
·  setiap 25 m pada medan pengunungan

            Pada perencanaan ini penomoran dilakukan pada setiap titik penting dan titik yang akan jadi tinjauan untuk perhitungan volume cut and fill. Sehingga dengan adanya Sta ini,  dapat memudahkan penulis dalam menentukan jarak per piasnya.

3.6  Perencaan perkerasan jalan
3.6.1        Perhitungan Tebal Lapisan Perkerasan
            Untuk merencanakan Lapisan Tebal Perkerasan pada perencanaan konstruksi jalan raya, data-datanya yaitu :
1.      Komposisi kendaraan awal umur rencana pada tahun 2005
2.      Klasifikasi Jalan
3.      Jenis Jalan
4.      Lebar Jalan     
5.      Arah Jalan
6.      Umur Rencana
7.      Pertumbuhan lalu lintas
8.      Curah hujan rata-rata pertahun
9.      Kelandaian jalan
10.  Jenis lapisan perkerasan yang digunakan
11.  Data CBR 

3.6.2        Menghitung LHR ( Lintas Harian Rata-Rata)
LHR di dapat dari data volume lalu lintas yang dapat diperoleh dari pos-pos rutin yang ada di sekitar lokasi perencanaan. Jika tidak terdapat pos-pos rutin di dekat lokasi atau untuk pengecekan data, perhitungan volume lalu lintas dapat dilakukan secara manual ditempat-tempat yang di anggap perlu.
( 1+ i )n
Rumus 
3.6.3        Menentukan Angka Ekivalen
Angka ekivalen kendaraan adalah angka yang menunjukkan jumlah lintasan dari sumbu tunggal yang akan menyebabkan kerusakan yang sama apabila kendaraan tersebut lewat satu kali. Angka ekivilen per sumbu dapat dilihat pada tabel di bawah :

Tabel 3.1 Angka Ekivalen (E) Beban Sumbu Kendaraan
Beban Sumbu
Angka Ekivalen
Kg
Lb
Sumbu Tunggal
Sumbu Ganda
1000
2000
3000
4000
5000
6000
7000
8000
8160
9000
10000
11000
12000
13000
14000
15000
16000
2205
4409
6614
8818
11023
13228
15432
17637
18000
19841
22046
24251
26455
28660
30864
33069
35276
0,0002
0,0036
0,0183
0,0577
0,1410
0,2923
0,5415
0,9238
1,000
1,4798
2,2555
3,3022
4,6770
6,4419
8,6647
11,4184
14,7815
-
0,0003
0,0016
0,0050
0,0121
0,0251
0,0466
0,0795
0,086
0,1273
0,1940
0,2840
0,4022
0,5540
0,7452
0,9820
1,2712
Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)

Angka ekivalen juga dapat dihitung dengan menggunakan rumus :
E sumbu tunggal    =   (beban sumbu tunggal, kg/8160)4
E sumbu ganda      =   (beban sumbu ganda, kg/8160)4 x 0,086                    

3.6.4        Menentukan LEP
            Lintas Ekivalen Permulaan (LEP) ditentukan dari jumlah rata-rata dari sumbu tunggal pada jalur rencana yang diperkirakan terjadi pada awal umur rencana
            Rumus
             

Dengan :
Cj       =     Koefisien distribusi kendaraan pada jalur rencana
Ej       =     Angka ekivalen beban sumbu untuk jenis kendaraan

               
3.6.5        Menentukan LEA
            Lintas Ekivalen Akhir (LEA) ditentukan dari jumlah lalu lintas harian rata-rata dari sumbu tunggal yang diperkirakan terjadi pada akhir umur rencana.
            Rumus
 


            Dengan :
i          =     Perkembangan lalu lintas
UR     =     Umur rencana
Cj       =     Koefisien distribusi kendaraan pada jalur rencana          
Ej       =     Angka ekivalen beban sumbu untuk jenis kendaraan

3.6.6        Menentukan LET
            Lintas ekivalen tengah dapat dicari dengan menggunakan rumus
            Rumus
LET  =  (LEP + LEA) / 2
 



3.6.7        Menentukan LER
LER = LET x FP

Lintas Ekivalen Rencana (LER) dapat dihitung dengan menggunakan Rumus :
            Rumus

           

            Dengan  :
            FP     =       Faktor Penyesuaian = UR/10
3.6.8        Penentuan Harga CBR
Subgrade atau lapisan tanah dasar merupakan lapisan yang paling atas, diatas mana diletakkan lapisan dengan material yang lebih baik. Di indonesia daya dukung tanah dasar untuk kebutuhan perencanaan tebal perkerasan ditentukan dengan menggunakan pemeriksaan CBR. Setelah didapatkan data CBR untuk kemudian dicari nilai CBR segmennya. Dapat digunakan rumus :

CBR segmen      =  CBR rata-rata – CBR max – CBR min
                                                                             R
Untuk nilai R tergantung dari jumlah data yang terdapat dalam 1 segmen. Besarnya nilai R.
                               Tabel 3.2 Nilai R Untuk Perhitungan CBR Segmen

Jumlah titik pengamatan
Nilai R
2
1,41
3
1,91
4
2,24
5
2,48
6
2,67
7
2,83
8
2,96
9
3,08
>10
3,18

3.6.9        Menentukan Tebal Lapisan Perekerasan
a.      Menentukan Nilai DDT (Daya Dukung Tanah)
      Dari hasil pemeriksaan data CBR, kita dapat menentukan nilai DDT.

b.      Menentukan Faktor Regional (FR)
            Faktor regional berguna untuk memperhatikan kondisi jalan yang berbeda antara yang satu dengan yang lain. Untuk mendapatkan nilai FR, terlebih dahulu harus didapatkan nilai persen kendaraan berat. Data-data untuk menghitung  % kendaraan berat didapat dari data komposisi kendaraan rencana awal. Dapat digunakan rumus :


% kendaraan berat   =  Jumlah kendaraan berat      x 100 %   
                                        Jumlah semua kendaraan
            Nilai FR dapat kita lihat pada tabel dibawah :
Tabel 3.3 Faktor Regional

Curah Hujan
Kelandaian I ( < 6 %)
Kelandaian II
(6-10%)
Kelandaian III
(> 6 %)
% kendaraan berat
% kendaraan berat
% kendaraan berat
≤ 30 %
> 30 %
≤ 30 %
> 30 %
≤ 30 %
> 30 %
Iklim I < 900 mm/th
0,5
1,0 – 1,5
1,0
1,5 – 2,0  
1,5
2,0 – 2,5
Iklim II > 900 mm/th
1,5
2,0 – 2,5
2,0
2,5 – 3,0
2,5
3,0 – 3,5
Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)

c.       CBR tanah dasar rencana
            Nilai CBR yang di dapat melalui metode grafis dan analitis.
d.      Indeks Permukaan (IP)
            Untuk mendapatkan nilai IP dapat dilihat dari nilai LER dan tabel indeks permukaan di bawah ini.
Tabel 3.4 Indeks Permukaan pada akhir umur rencana

Lintas Ekivalen Rencana
Klasifikasi Jalan
Lokal
Kolektor
Arteri
Tol
< 10
10 – 100
100 – 1000
> 1000
1,0 – 1,5
1,5
1,5 – 2,0
-
1,5
1,5 – 2,0
2,0
2,0 – 2,5
1,5 – 2,0
2,0
2,0 – 2,5
2,5
-
-
-
2,5
Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)

e.       Indeks Permukaan pada awal umur rencana (ITP)
            ITP dapat ditentukan melalui grafik nomogram. Untuk menentukan ITP dari grafik nomogram di perlukan data sebagai berikut, IP, IPo, DDT, LER, dan FR. Untuk mendapatkan angka Ipo, dapat dilihat pada tabel berikut.





Tabel 3.5 Indeks Permukaan pada awal umur rencana
Jenis Lapis Perkerasan
IPo
Roughness (mm/km)
LASTON

LASBUTAG

HRA

BURDA
BURTU
LAPEN

LATASBUM
BURAS
LATASIR
JALAN TANAH
JALAN KERIKIL
≥ 4
3,9-3,5
3,9 – 3,5
3,4 – 3,0
3,9 – 3,5
3,4 – 3,0
3,9 – 3,5
3,4 – 3,0
3,4 – 3,0
2,9 – 2,5
2,9 – 2,5
2,9 – 2,5
2,9 – 2,5
≤ 2,4
≤ 2,4
≤ 1000
>1000
≤ 2000
>2000
≤ 2000
>2000
< 2000
< 2000
≤ 3000
>3000

Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)

f.       Menetapkan Tebal Perkerasan
            Variabel-variabel untuk menetapkan lapisan tebal perkerasan dilihat pada tabel-tabel berikut.

Tabel 3.6 batas-batas minimum tebal lapisan perkerasan untul lapis permukaan

ITP
Tebal Minimum (cm)
Bahan
< 3,00
3,00 – 6,70

6,71 – 7,49

7,50 – 9,99
≥10,00
5
5

7,5

7,5
10
Lapis pelindung : (Buras/Burtu/Burdu)
Lapen/Aspal Macadam, HRA, Lsbutag, Laston
Lapen/Aspal Macadam, HRA, Lsbutag, Laston
Lasbutag, Laston
Laston
Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)

Tabel 3.7 batas-batas minimum tebal lapisan perkerasan untul lapis pondasi

ITP
Tebal Minimum (cm)
Bahan
< 3,00

3,00 – 7,49


7,50 – 9,99


10 – 12,14


≥12,25
15

20

10
20

15
20


25
Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur
Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur
Laston Atas
Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur, pondasi macadam
Laston Atas
Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur, pondasi macadam, Lapen, Laston atas
Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur, pondasi macadam, Lapen, Laston atas
Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)


Tabel 3.8 Koefisien Kekuatan Relatif

Koefisien Kekuatan Relatif
Kekuatan Bahan


Jenis Bahan
a1
a2
a3
MS
(kg)
Kt(kg/cm)
CBR %
0,40
0,35
0,32
0,30
-
-
-
-
-
-
-
-
744
590
454
340
-
-
-
-
-
-
-
-


LASTON
0,35
0,32
0,28
0,26
-
-
-
-
-
-
-
-
744
590
454
340
-
-
-
-
-
-
-
-


LASBUTAG
0,30
0,26
0,25
0,20
-
-
-
-
-
-
-
-
340
340
-
-
-
-
-
-
-
-
-
-
HRA
MACADAM
LAPEN (MEKANIS)
LAPEN (MANUAL)
-
-
-
0,28
0,26
0,24
-
-
-
590
454
340
-
-
-
-
-
-

LASTON ATAS
-
-
0,23
0,19
-
-
-
-
-
-
-
-
LAPEN (MEKANIS)
LAPEN (MANUAL)
-
-
0,15
0,13
-
-
-
-
-
-
-
-
Stab tanah dengan semen
-
-
0,15
0,13
-
-
-
-
22
18
-
-
Stab dengan kapur
-
-
    -
-
-
-
0,14
0,13
0,12
-
-
-
-
-
-
0,13
0,12
0,11
-
-
-
-
-
-
-
-
-
-
-
-
100
80
60
70
50
30
Batu pecah (Kelas A)
Batu pecah (Kelas B)
Batu pecah (Kelas C)
Sirtu/pitrun (Kelas A)
Sirtu/pitrun (Kelas B)
Sirtu/pitrun (Kelas C)
-
-
0,10
-
-
20
Tanah Lempung Kepasiran
Sumber :    Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan metode Analisa Komponen, Depaertemem Pekerjaan Umum (1987)





BAB IV
PERENCANAAN ALINYEMEN HORIZONTAL


            Direncanakan pembuatan jalan kelas III untuk jalan penghubung. Peraturan Perencanaan Jalan Raya (PPGJR) N0.13/1970 standar geometrik adalah sebagai berikut:
  • Klasifikasi Jalan                                                                      = Kelas III
  • Kecepatan Rencana                                                                = 60 km/jam
  • Lebar perkerasan                                                                     = 7 m
  • Lebar Bahu jalan                                                                     = 2 x 1,5 m  
  • Miring Melintang Jalan (Transversal)                          = 2 %
  • Miring Melintang Bahu  Jalan                                     = 4 %              
  • Miring memanjang jalan (longitudinal) maksimal                   = 10 %
  • Kemiringan Talud                                                                   = 1 : 1


5.1       Lengkung horizontal I ( S S )
 Menggunakan tikungan jenis Spiral-Spiral dengan Rc = 477 m
Vr    = 60 km/jam
    = 20 o
Lebar jaln = 2 x 3,5 m ; e max = 2 %
Dari table 4.7 (Metode  Bina Marga), didapat e = 0,042
v  Besar Sudut Spiral
      = 1/2 = 1/2 . 20= 10 o

dari tabel 4.10 silvia sukirman diperoleh
p*     =       0,0147400
k*     =       0,4994880
p       =       Ls x p*
         =       166,42 x 0,0147400
p       =       2,4530308 m
k       =       Ls x k*
         =       166,42 x 0,4994880
k       =       83,124793 m

Ts     =       ( Rc + p) tg 1/2 + k
         =       (477 + 2,453031) tg ½ . 20 + 83,12479
Ts    =       167,6653 m

Es     =       (Rc + p) cos ½  - Rc
         =       (477 + 2,453031) cos ½ . 20 - 477
      Es    =      9,8493666

      L       =       2 Ls
               =       2 x 166,42
      L       =       332,84 m

      Ls minimum berdasarkan landai relatif menurut metode bina marga adalah :
      m      =       125 (dari tabel 4.5 silvia sukirman)
      Lsmin =       m (e +en) B
               =       125 (0,042 + 0,02) x 3,5
      Lsmin  =       27,125 m
      Ls     >       Lsmin
      166,42 m > 27,125 m (OK)

      Kontrol :
      Ls < 2 Ts
      166,42 m < (2 x 167,6653) m
      166,42 m < 335,3306 (OK)

Landai relatif BM = [(0,02 + 0,042) x 3,5] / 166,42  = 0,0013%
Kelandaian Relatif maksimum untuk kecepatan rencana 60 km/jam adalah :
Kontrol :
0,0013% < 0,008 %  (OK)
5.2  Lengkung Horizontal II ( S – C – S )
Menggunakan lengkung busur lingkaran dengan lengkung peralihan (Spiral – Lingkaran –Spiral), perhitungan sebagai berikut:
1       =    25 o
V         =    60 Km/Jam
Direncanakan jari-jari Rc = 358 m
Melalui tabel 4.7 (silvia : 113) diperoleh : e = 0,054 dan Ls = 50 
v  Besar Sudut Spiral
v  Besar pusat busur lingkaran
     = 25- (2 x 4,003131)
            = 16,99 o

v  Panjang lengkung circle
dari tabel 4.10 silvia sukirman diperoleh
p* =    0,005859
k* =    0,4999186
p    =    Ls x p*
      =    50 x 0,005859
            P    =    0,292945 m
k    =    Ls x k*
      =    50 x 0,4999186
            k    =    24,99593 m

Ts =    ( Rc + P) tg 1/2 + k
      =    (358 + 0,292945) tg ½ . 25 + 24,99593
           Ts   =    104,4276 m
Es =    (Rc + p) cos ½  - Rc
     =    (358 + 0,292945) cos ½ . 25 – 358
            Es  =  8,992126

            L    =    Lc + 2 Ls
                  =     + (2 x 50)
L   =    206,1278 m

            Kontrol :
L < 2 Ts
206,1278 m < (2 x 104,4276) m
            206,1278 m < 208,8551 (OK)

Landai relatif BM = [(0,02 + 0,054) x 3,5] / 50 = 0,00518 %
Kelandaian Relatif maksimum untuk kecepatan rencana 60 km/jam adalah :
Kontrol :
0,00518 % < 0,008 %  (OK)
                                             
Rekapitulasi Alinyemen Horizontal
No.
1
2
PI STA
264  m
180 m
Δ
20 o
25 o
VR
60 km/jam
60 km/jam
RC
477 m
358 m
LS
166,42 m
50 m
θ S
10 o
4,003 o
θ C
-
16,99 o
p*
0,0147400
0,005859
k*
0,4994880
0,4999186
p
2,4530308 m
0,292945  m
k
83,124793 m
24,99593 m
TS
167,6653 m
104,4276 m
E S
9,8493666 m
8,992126 m
L C
-
106,104 m
L
332,84 m
206,1278 m
e
0,054
0,042
Landai Relatif
0,0013
0,00518
Jenis lengkung
S-S
S-C-S

5.3 Perhitungan Stasioning Horizontal
A.    Lengkung Horizontal I (S- S)
Dari perhitungan lengkung horizontal I diperoleh:
Sta PA       =    0 + 0.00
  Sta PT1      =    Sta PA +  D1
                           =   0.00 + (26,4 x 50) = 1320 m
Sta TS1     =    Sta PA + D1 - Ts1
                        =    (0.00 + 1320) - 167,6653 = 1152,3347 m
Sta SC1     =    Sta TS1 + Ls1
                           =   1152,3347 + 166,42 = 1318,7547 m
Sta CS1      =     Sta SC1
                        =    1318,7547 m
Sta ST1       =    Sta CS1 + Ls1
                            =   1318,7547 + 166,42 = 1485,1747 m

B.     Lengkung Horizontal II (S-C-S)
Dari perhitungan lengkung horizontal I I diperoleh:
Sta PT2    =    Sta ST1 + (D2) -TS1
                                    =   1485,1747 + (18 x 50) -167,6653 = 2217,5094 m
Sta TS2     =    Sta PT2 - TS2
                                    =   2217,5094 - 104,4276   = 2113,0818 m
Sta SC2     =    Sta TS2 + LS2
                                   =    2113,0818 + 50 = 2163,0818 m
Sta CS2     =    Sta SC2 + Lc
                                    =   2163,0818 + 106,104 = 2269,1858 m

Sta ST2     =    Sta CS2 + LS2
                                    =   2269,1858 + 50 = 2319,1858 m
Sta Akhir Proyek     =  Sta ST2 + (D3) – TS
                                 =  2319,1858 + (27,9 x 50) – 104,4276
                                 = 3609,7582 m

Kontrol :
3609,7582 m     <     (D1) + (D2) +(D3)
3609,7582 m     <     (26,4 x 50) + (18 x 50) + (27,9 x 50)
3609,7582 m     <     3615 m   (OK)


5.4 Perhitungan Kebebasan Samping
ü    Jarak pandang Henti ( JPH )
 Jarak pandang Henti tikungan I dan II dengan data sebagai berikut :
V ( Kecepatan kendaraan )     : 60 km/jam
T ( Waktu rencana )                : 2,5 s
F ( koefesian gesek antara ban dan perkerasan menurut AASHTO untuk kecepatan 60 km/jam ) = 0,33
JPHmn ( Jarak pandang henti minimum ( Tabel Spesifikasi standar untuk perencanaan geometric jalan luar kota Bina Marga,1990 ) = 75 - 85 m
d1        =    Jarak yang ditempuh dalam waktu standar.
d1        =    0.278 . V t
            =    0.278 . 60 . 2.5
d1        =    41,7  m
d2 ( Jarak Pengereman )         
d2        =     
            =   
d2        =    42,95  m
JPH     =    d1 + d2
            =    41,7 + 42,95
JPH     =    84,65 m
Karena JPH > JPHmin  maka dalam perencanaan dipakai nilai
JPH     = 84,65 m

ü  Perhitungan kebebasan samping
           Tikungan I (tikungan Spiral - Spiral)
            R         =    143 m                            
V         =    60 km/jam
JPH     =    84,65 m
m         =    ( JPH )²  :  8.R
                        =    ( 84,65 )² : 8.143
            m         =    6,26 m
            Jadi kebebasan samping tikungan I = 6,26 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
           Tikungan II (tikungan Spiral-Circle-Spiral)
            R         =    358 m
            V         =    60 km/jam
            JPH     =    84,65 m
m         =    ( JPH )² : 8.R
            =    (84,65)² : 8 . 358
            m         =    2,50 m
Jadi kebebasan samping tikungan II = 2,50 m

ü  Perhitungan pelebaran pada tikungan
           Tikungan I (tikungan Spiral - Spiral)
Diketahui :
d1                    =    1320 m
Ls                    =    166.42 m
e max               =    0,054
en                            =     2 %
V                            =    60 km/jam
R                     =    477 m
Jumlah Jalur    =   2 m
Bn                   =    2 x 3,5 = 7 m
Lebar Jalan      =    3,5 m
Di dapatkan data dari buku-buku ” Dasar- dasar perencanaan geometrik jalan ” truck tunggal sebagai kenderaan rencana (daerah bukit)
            R                     =    Jarak gander (6,5)
            A                     =    Panjang tonjolan depan (diukur dari gander depan = 1,5 m)
b                      =    Lebar kenderaan rencana 2,5 m
C                     =    Kebebasan samping 1 m

Pelebaran Perkerasan
            B         =   
            Rc        =    R – ¼ x lebar perkerasan + ½ b
                        =    477 – ¼ x 3,5 + ½ 2,5
            Rc        =    477,375 m

            Maka :
            B         =   
=  √ (√(477,3752 – (6,5+1,5) 2 + ½ 2,5) + (6,5+1,5) 2) - (√(477,3752           (6,5+1,5) 2 + ½ 2,5
                        =    √ (√(477,3752 – 64 + 1,25)  2 + 64)  – (√(477,3752 – 64 + 1,25)
                        =    478.62-477.30 +1,25
            B         =    2,57 m
Z          =    0,105 .
                        =    0,105 .
            Z          =    0,013 m
           
Bt        =    n (B+C) + Z
            =    2 (2,57 +1) + 0,013
Bt        =    7,513 m

Maka lebarnya perkerasan pada tikungan I
        =    Bt – Bn
            =    7,513 – 3,5
        =    4,013 m

           Tikungan II (tikungan Spiral-Circle-Spiral)
            Diketahui :
d2                    =    900 m
Ls                    =    50 m
e max               =    0,042
en                            =     2 %
V                            =    60 km/jam
R                     =    358 m
Jumlah Jalur    =   2 m
Bn                   =    2 x 3,5 = 7 m
Lebar Jalan      =    3,5 m
Di dapatkan data dari buku-buku ” Dasar- dasar perencanaan geometrik jalan ” truck tunggal sebagai kenderaan rencana (daerah bukit)
            R                     =    Jarak gander (6,5)
            A                     =    Panjang tonjolan depan (diukur dari gander depan = 1,5 m)
b                      =    Lebar kenderaan rencana 2,5 m
C                     =    Kebebasan samping 1 m

Pelebaran Perkerasan
            B         =   
            Rc        =    R – ¼ x lebar perkerasan + ½ b
                        =    358 – ¼ x 3,5 + ½ 2,5
            Rc        =    358,375 m

            Maka :
            B         =   
                        =    √ (√(358,375 2 – (6,5+1,5) 2 + ½ 2,5) + (6,5+1,5) 2) - (√(358,375 2 – (6,5+1,5) 2 + ½ 2,5
                        =    √ (√(358,375 2 – 64 + 1,25)  2 + 64)  – (√(358,375 2 – 64 + 1,25)
                        =    359,733– 358,286 + 1,25
            B         =    2,7  m
Z          =    0,105 .
                        =    0,105 .
            Z          =    0,0176 m
           
Bt        =    n (B+C) + Z
            =    2 (2,7+1) + 0,0176
Bt        =    7,42 m

Maka lebarnya perkerasan pada tikungan II
        =    Bt – Bn
            =    7,42 – 3,5
        =    3,92 m



















BAB V
PERENCANAAN ALINYEMEN VERTIKAL

Pergantian dari satu kelandaian ke kelandaian yang lain dilakukan dengan menggunakan lengkung vertikal. Lengkung vertikal tersebut direncanakan sedemikian rupa sehinggga memenuhi keamanan dan kenyamanan drainase.

Jenis lengkung vertikal dilihat dari letak titik perpotongan bagian lurus (tangen) adalah :
1.      Lengkung vertikal cekung, adalah lengkung dimanan titik perpotongan antara kedua tangen berada di bawah permukaan jalan.
2.      Lengkung vertikal cembung, adalah lengkung dimana titik perpotongan antara kedua tangen berada di atas permukaan jalan.

Dalam perencanaan alinyemen vertikal, diperoleh tiga buah lengkung vertikal cembung dan dua buah lengkung vertikal cekung.
Menentukan kemiringan jalan
1.      Lengkung Vertikal Cekung
g1         =  
                        =    -0,2 % < 10 %
            g2            =   
                        =    -0,0603 % < 10 %
            A         =    g  – g   =    - 0,2  %  (-0,0603 %)
=    - 0,1397 %

            Dari Gambar 5.1 halaman 34 buku “Perencanaan Trase Jalan Raya”, dengan nilai A = - 0,1397  % diperoleh  Lv = 37 m = 40 m
Ev =  0,006985 m
v  STA PLV1 berada pada STA 1+320 – (0,5 x 40) = STA 1+300
v  STA PPV1 berada pada STA 1+320
v  STA PTV1 berada pada STA 1+320 + (0,5 x 40) = STA 1+340
Elevasi as jalan pada stasiun :
v  STA 1+300     =    61,5 – (-0,2 % x 20)                   =    61,540 m
v  STA 1+320     =    61,5 – (0,006985)                                  =    61,493 m
v  STA 1+340     =    61,5 – (-0,0603 % x 20)             =    61,512 m

2.      Lengkung Vertikal Cembung
g1         =  
                        =    -0,0603 % < 10 %
            g2            =   
                        =    0 % < 10 %
            A         =    g  – g   =    -0,0603 % –  0 %)
=    -0,0603  %

            Dari Gambar 5.2 halaman 34 buku “Perencanaan Trase Jalan Raya”, dengan nilai A = -0,0603  % diperoleh  Lv = 37 m = 40 m.
Ev =  - 0,003 m
v  STA PLV2 berada pada STA 2+220 - (0,5 x 40) = STA 2+200
v  STA PPV2 berada pada STA 2+220
v  STA PTV2 berada pada STA 2+220 + (0,5 x 40) = STA 2+240
Elevasi as jalan pada stasiun :
v  STA 2+200     =    64,5 – (-0,0603 % x 20)             =    64,512 m
v  STA 2+220     =    64,5 – (- 0,003)                          =    64,503 m
v  STA 2+240     =    64,5 –  (0% x 20)                       =    64,5 m

Rekapitulasi Alinyemen Vertikal
Lengkung Vertikal

A (%)
V (km/jam)
Lv (m)
Ev (m)
g1 (%)
g2 (%)
g1 – g2
Cekung
-0,2
-0,0603
- 0,1397
60
40
0,006985
Cembung
-0,0603
-0,0603 
60
40
- 0,003






























BAB VI
PERHITUNGAN GALIAN (CUT) DAN TIMBUNAN (FILL)


Dari sketsa jalan, dapat dilihat bagian jalan yang terletak pada bagian galian dan timbunan. Pada jalan yang terletak pada bagian yang tersambung dapat dicari volumenya secara menyeluruh. Seperti bagian antara titik awal (A) dengan titik perpotongannya muka tanah dengan rencana lintasan jalan, dicari dulu luas – luas tampang melintang, volume adalah luas tampang dikalikan jarak antara kedua penampang, apabila diantarai oleh dua luas tampang yang tertentu maka harus dicari luas tampang melintang rata-rata dan dikalikan jarak antara kedua penampang yang bersangkutan.
Lain halnya bila ruas yang harus dicari diantarai oleh dua tampang yang berbeda, yang satu galian dan yang satu timbunan. Maka harus dicari titik potong muka tanah dengan permukaan jalan, atau batas antara galian dan timbunan seperti pada gambar di bawah ini.(gambar 6.1)
Gambar 6.1  Batas antara galian dan timbunan

a : b = ( L - x ) : x        ( a+ b) x  = b. L
ax    = b . L – b.x  = x =
ax + bx = b.L
Dengan demikian dapat diketahui panjang bagian galian dan timbunan, sehingga dapat dicari volumenya.

Penampang jalan yang direncanakan diperlihatkan pada Gambar 6.2 di bawah ini.
 Gambar 6.2 Potongan melintang jalan

















BAB VII
PERENCANAAN PERKERASAN JALAN

7.1        Perhitungan Tebal Lapisan Perkerasan
            Untuk merencanakan Lapisan Tebal Perkerasan pada perencanaan konstruksi jalan raya, data-datanya yaitu :
1.            Komposisi kendaraan awal umur rencana pada tahun 2005
         a.  Mobil penumpang       (1+1)         =      2300            Kendaraan
         b.  Bus 8 ton                     (3+5)         =      475              Kendaraan
         c.  Truk 2 as 10 ton          (4+6)         =      80                Kendaraan
         d.  Truk 2 as 13 ton          (5+8)         =      35                Kendaraan
         e.  Truk 3 as 20 ton          (6+7+7)     =      25                Kendaraan
            Jalan akan dibuka pada tahun 2009
2.            Klasifikasi Jalan
         Klasifikasi Jalan                =    1
         Jalan                                  =    Kolektor
         Lebar Jalan                        =    7 meter
Arah                                  =    2 jalur, 2 arah tanpa median
3.            Umur Rencana (5+5) tahun
4.            Pertumbuhan lalu lintas     =    5 % selama pelaksanaan
                                             =    5 % perkembangan lalu lintas
5.            Curah hujan rata-rata pertahun : 750 mm/tahun
6.            Kelandaian jalan 6%
7.            Jenis lapisan perkerasan yang digunakan :
         Lapisan permukaan      :  Laston
         Pondasi atas                 : Batu pecah kelas A
         Pondasi bawah             : Sirtu Kelas B
8.            Data CBR  :  4  5  6  7  8  9  10  5  4  8


7.1.1    Menghitung LHR ( Lintas Harian Rata-Rata)
a.      Komposisi Kendaraan awal umur rencana (2005)
a.  Mobil penumpang    (1+1)                         =    2300          kendaraan
b.  Bus 8 ton                 (3+5)                         =    475            kendaraan
c.  Truk 2 as 10 ton       (4+6)                         =    80              kendaraan
d.  Truk 2 as 13 ton       (5+8)                         =    35              kendaraan
e.  Truk 3 as 20 ton       (6+7+7)                     =    25              kendaraan +
                                                                              =    2915 Kendaraan

b.      Perhitungan LHR pada tahun  2009
( 1+ i )n
                                                                             

a.  Mobil penumpang  2300 x ( 1 + 0,05)4        =  2796 kend/hari
b.  Bus 8 ton                  475 x ( 1 + 0,05)4        =    577 kend/hari
c.  Truk 2 as 10 ton         80  x ( 1 + 0,05)4       =      97 kend/hari
d.  Truk 2 as 13 ton         35  x ( 1 + 0,05)4       =     43 kend/hari
      e.  Truk 3 as 20 ton         25  x ( 1 + 0,05)4       =      30 kend/hari  +
                                                  LHR 2009          =  3543 kend/hari

c.       Perhitungan LHR pada tahun  pada Tahun ke 5 (2014)
LHR 2009 ( 1+ i )n

 


a.  Mobil penumpang     2796 x ( 1 + 0,05)5     =    3568  kend/hari
b.  Bus 8 ton                  577   x ( 1 + 0,05)5      =    737    kend/hari
c.  Truk 2 as 10 ton         97   x ( 1 + 0,05)5      =    124    kend/hari
d.  Truk 2 as 13 ton         43   x ( 1 + 0,05)5      =      54    kend/hari
      e.  Truk 3 as 20 ton         30   x ( 1 + 0,05)5      =      39    kend/hari  +
                                                         LHR 2014           =  4522    kend/hari

d.      Perhitungan LHR pada tahun  pada Tahun ke 5 berikutnya (2019)
LHR 2014 ( 1+ i )n

 
     

a.  Mobil penumpang  3568  x ( 1 + 0,05)5       =      4554  kend/hari
b.  Bus 8 ton                  737  x ( 1 + 0,05)5       =      940   kend/hari
c.  Truk 2 as 10 ton       124  x ( 1 + 0,05)5       =      158    kend/hari
d.  Truk 2 as 13 ton         54  x ( 1 + 0,05)5       =        69   kend/hari
      e.  Truk 3 as 20 ton         39  x ( 1 + 0,05)5       =        49   kend/hari  +
                                        LHR 2019                =  5772   kend/hari

7.1.2    Menentukan Angka Ekivalen
Angka ekivalen per sumbu dapat dilihat pada tabel 3.1.
            Berdasarkan tabel 3.1 didapat angka ekivalen :
a.  Mobil penumpang  (1+1)    =  0,0002 + 0,0002        =        0,0004
b.  Bus 8 ton                (3+5)   =  0,0183 + 0,1410        =        0,1593
c.  Truk 2 as 10 ton      (4+6)   =  0,0577 + 0,2923        =        0,35
d.  Truk 2 as 13 ton      (5+8)  =  0,1410 + 0,9238        =        1,0648
e.  Truk 3 as 20 ton   (6+7+7) =  0,2923 + 1,083          =        1,0375

7.1.3        Menentukan LEP
            
Dari data yang telah di dapat, dapat dihitung nilai LEP yaitu :

a.  Mobil penumpang  2795,7 x 0,5 x 0,0004   =  0,55913
b.  Bus 8 ton                  577 x 0,5 x 0,1593      =  45,9872
c.  Truk 2 as 10 ton         97 x 0,5 x 0,35          =  17,0171
d.  Truk 2 as 13 ton         43 x 0,5 x 1,0648      =  22,6497
      e.  Truk 3 as 20 ton         30 x 0,5 x 1,03753    =  20,8961       +
                                                    LEP   2009               =  107,109
7.1.4        Menentukan LEA
 


            Perhitungan LEA untuk 5 tahun (2014)
a.  Mobil penumpang  3568 x 0,5 x 0,0004      =  0,71361
b.  Bus 8 ton                 737 x 0,5 x 0,1593       =  58,6926
c.  Truk 2 as 10 ton       124 x 0,5 x 0,35          =  21,7186
d.  Truk 2 as 13 ton         54x 0,5 x 1,0648       =  28,9074
      e.  Truk 3 as 20 ton        39 x 0,5 x 1,0375       =  26,6693        +
                                              LEA   2014               = 136,701
            Perhitungan LEA untuk 10 tahun (2019)
a.  Mobil penumpang  4554 x 0,5 x 0,0004      =  0,91077
b.  Bus 8 ton                  940 x 0,5 x 0,1593      =  74,9082
c.  Truk 2 as 10 ton       158 x 0,5 x 0,35          =  27,719
d.  Truk 2 as 13 ton         69 x 0,5 x 1,0648      =  36,894
      e.  Truk 3 as 20 ton        49 x 0,5 x 1,03753     =  34,0375         +
                                              LEA   2019              =  174,47

7.1.5        Menentukan LET
           
LET  =  (LEP + LEA) / 2
 


                Dari data, dapat dihitung LET yaitu :
LET 5      =  ½  ( LEP + LEA5)
                =  ½  (107,109+ 136,701)
                =  121,9                                                                                                      
LET 10    =  ½  ( LEP + LEA 10)
                =  ½ (107,109+ 174,47)
                =  87,3
7.1.6        Menentukan LER
LER             =       LET x UR/10
LER5           =       LET5 x 5/10
                     =       121,905 x 0,5
                     =       60,9

LER5           =       1,67 x 60,95
                                 =       101,8
LER10          =       LET10 x 10/10
                     =       87,235x 1
                     =       87,3
LER10          =       2,5 x 87,235
                     =       218,1

7.1.7        Penentuan Harga CBR

Dari data yang didapat data CBR sebesar : 4  5  6  7  8  9  10  5  4  8

CBR rata-rata     =    4+5+6+7+8+9+10+5+4+8
                                                10
                           =       6,6
CBR max           =       10
CBR min            =       4

Untuk nilai R tergantung dari jumlah data yang terdapat dalam 1 segmen. Besarnya nilai R dapat dilihat pada tabel 3.2
             CBR segmen    =       CBR rata-rata – CBR max – CBR min
                                                                               R
                           =       6,6 – 10 – 4
                                               3,18     
                           =       4,7      
7.1.8        Menentukan Tebal Lapisan Perekerasan

a.            Menentukan Nilai DDT (Daya Dukung Tanah)
Dari hasil pemeriksaan data CBR, kita dapat menentukan nilai DDT dengan cara berikut :
DDT               =  4,3 . Log 4,7 + 1,7
            =  4,3 x0,672 + 1,7
DDT   =  4,6




b.            Menentukan Faktor Regional (FR)
                     % kendaraan berat      =  Jumlah kendaraan berat      x 100 %   
                                                                Jumlah semua kendaraan

                                                            =  (615)     x 100%
                                                                2915

                                                            =  21,1  %

Dari data yang diberikan diketahui :
-          Curah hujan 750 mm/thn = iklim I < 900/thn
-          Landai Jalan 6 % = Kelandaian II ( 6 - 10 % )
            Nilai FR dapat dilihat pada tabel 3.3. Dari Tabel 3.3 maka didapat Faktor Regional adalah = 1

c.             CBR tanah dasar rencana
            Nilai CBR yang di dapat melalui metode grafis dan analitis adalah = 4,7

d.            Indeks Permukaan (IP)
Untuk mendapatkan nilai IP dapat dilihat dari nilai LER dan tabel 3.4. Nilai LER untuk 5 tahun kedepan adalah 60,9. Nilai LER untuk 10 tahun kedepan adalah 312,1. Dengan klasifikasi jalan kolektor.

Klasifikasi jalan arteri,
LER5                    =    60,9           =    10 – 100,               IP        =   1,5 – 2,0
LER10                  =    218,1         =    100 – 1000,           IP        =    2
IP yang digunakan adalah = 2

e.             Indeks Permukaan pada awal umur rencana (ITP)
ITP dapat ditentukan melalui grafik nomogram. Untuk menentukan ITP dari grafik nomogram di perlukan data sebagai berikut, IP, IPo, DDT, LER, dan FR. Untuk mendapatkan angka Ipo, dapat dilihat pada tabel 3.5.

Dari tabel dan grafik nomogram di dapat hasil :
-          Untuk 5 tahun kedepan
IP              =    2
IPo            =    3,9 – 3,5
DDT          =    4,6
LER5            =    60,9
FR             =    1
Maka diperoleh
ITP            =    6,4 (nomogram 3)

-          Untuk 10 tahun kedepan
IP              =    2
IPo            =    3,9 – 3,5
DDT          =    4,6
LER10          =    218,1
FR             =    1
Maka diperoleh
ITP            =    7,8  (nomogram 3)

f.             Menetapkan Tebal Perkerasan
Variabel-variabel untuk menetapkan lapisan tebal perkerasan dilihat pada tabel 3.6, 3.7 dan tabel 3.8.
            Dari tabel kita dapat menentukan nilai a1, a2 dan a3. dan juga nilai d1, d2 dan nilai d3.
Untuk 5 Tahun
Koefisien kekuatan relatif, dilihat dari tabe koefisien relatif
-     Lapisan permukaan        :  Laston, MS 744          a1        =    0,40
-     Lapisan Pondasi atas      :  Batu pecah kelas A     a2        =    0,14
-     Lapisan Pondasi bawah :  Sirtu kelas B                a3        =    0,12

Tebal lapisan minimum dilihat dari ITP = 6,4

-     Lapisan permukaan        :  Laston, MS 744          d1       =    5
-     Lapisan Pondasi atas      :  Batu pecah kelas A     d2       =    20
-     Lapisan Pondasi bawah :  Sirtu kelas B                d3       =    20

ITP         =    a1 x d+  a2 x d+  a3 x d3
6,4          =    2 + 2,8  + 0,12 d3
                    =    4,8  + 0,12 d3
               =    6,44,8
                          0,12
d3               13  cm

Untuk 10 Tahun
Koefisien kekuatan relatif, dilihat dari tabel koefisien relatif
-     Lapisan permukaan        :  Laston, MS 744          a1        =    0,40
-     Lapisan Pondasi atas      :  Batu pecah kelas A     a2        =    0,14
-     Lapisan Pondasi bawah :  Sirtu kelas B                a3        =    0,12
Tebal lapisan minimum dilihat dari ITP = 7,8

-     Lapisan permukaan        :  Laston, MS 744          d1       =    7,5
-     Lapisan Pondasi atas      :  Batu pecah kelas A     d2       =    20
-     Lapisan Pondasi bawah :  Sirtu kelas B                d3       =    20

ITP         =    a1 x d+  a2 x d+  a3 x d3
7,8          =    3 + 2,8  + 0,12 d3
                    =    5,8  + 0,12 d3
                    =    7,8 – 5,8
                       0,12
d3               =    16,6 cm = 17 cm

            Untuk 10 Tahun
7,8          =    0,4 d+  0,14 d+  0,12 d3
7,8          =    0,4 d1 + 2,8 + 2,04
                    =    4,84  + 0,4 d1
               =    7,84,84
                          0,4
d1               =    7,4 cm = 7 cm

d0            =    7,5 - 7
d0            =    0,5 cm = 3 cm (syarat tebal minimum)











































BAB VIII
KESIMPULAN DAN SARAN

8.1              Kesimpulan
Berdasarkan hasil perhitungan dan pembahasan, dapat diambil kesimpulan sebagai berikut :
1.      Tanjakan terbesar yaitu 0,20 %, berarti memenuhi persyaratan yang diizinkan yaitu <10%
2.      Untuk perhitungan volume galian dan timbunan, nilai total yang didapat untuk galian adalah 48.778,30 m3 dan untuk timbunan adalah 19.591,29 m3.

8.2              Saran
Setelah mengerjakan perhitungan pada perencanaan trase jalan raya ini, penulis menyarankan untuk mendapatkan volume galian dan timbunan yang seimbang harus dilakukan lagi penyesuaian trase atau galian dan timbunan sehingga dapat diperoleh volume galian dan timbunan yang mendekati. Kalaupun tidak dapat seimbang diusahakan galian lebih besar dari pada timbunan, karena selain jalan yang dibuat dari tanah yang digali lebih kuat dari pada jalan yang dibuat dari tanah yang ditimbun juga karena pertimbangan faktor ekonomisnya. 













DAFTAR KEPUSTAKAAN

Bukhari dan Maimunah, 2005, Perencanaan Trase Jalan Raya, Banda Aceh: Fakultas Teknik Universitas Syiah Kuala.
Sukirman, Silvia, 1999, Dasar-Dasar Perencanaan Geometrik Jalan, Bandung: Penerbit Nova.